Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 191: 105339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963921

RESUMO

There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.


Assuntos
Afídeos , Besouros , Heterópteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Agricultura/métodos , Controle de Pragas , Besouros/genética , Controle de Insetos/métodos
2.
BMC Genomics ; 23(1): 45, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35012450

RESUMO

BACKGROUND: Orius laevigatus, a minute pirate bug, is a highly effective beneficial predator of crop pests including aphids, spider mites and thrips in integrated pest management (IPM) programmes. No genomic information is currently available for O. laevigatus, as is the case for the majority of beneficial predators which feed on crop pests. In contrast, genomic information for crop pests is far more readily available. The lack of publicly available genomes for beneficial predators to date has limited our ability to perform comparative analyses of genes encoding potential insecticide resistance mechanisms between crop pests and their predators. These mechanisms include several gene/protein families including cytochrome P450s (P450s), ATP binding cassette transporters (ABCs), glutathione S-transferases (GSTs), UDP-glucosyltransferases (UGTs) and carboxyl/cholinesterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality scaffold level de novo genome assembly for O. laevigatus has been generated using a hybrid approach with PacBio long-read and Illumina short-read data. The final assembly achieved a scaffold N50 of 125,649 bp and a total genome size of 150.98 Mb. The genome assembly achieved a level of completeness of 93.6% using a set of 1658 core insect genes present as full-length genes. Genome annotation identified 15,102 protein-coding genes - 87% of which were assigned a putative function. Comparative analyses revealed gene expansions of sigma class GSTs and CYP3 P450s. Conversely the UGT gene family showed limited expansion. Differences were seen in the distributions of resistance-associated gene families at the subfamily level between O. laevigatus and some of its targeted crop pests. A target site mutation in ryanodine receptors (I4790M, PxRyR) which has strong links to diamide resistance in crop pests and had previously only been identified in lepidopteran species was found to also be present in hemipteran species, including O. laevigatus. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for the Anthocoridae family and will serve as a useful resource for further research into target-site selectivity issues and potential resistance mechanisms in beneficial predators. Furthermore, the expansion of gene families often linked to insecticide resistance may be an indicator of the capacity of this predator to detoxify selective insecticides. These findings could be exploited by targeted pesticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably, environmentally-friendly and effectively control pests without impacting beneficial predator populations.


Assuntos
Heterópteros , Inseticidas , Tisanópteros , Animais , Genoma , Humanos , Resistência a Inseticidas
3.
BMC Genomics ; 23(1): 198, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279098

RESUMO

BACKGROUND: Sphaerophoria rueppellii, a European species of hoverfly, is a highly effective beneficial predator of hemipteran crop pests including aphids, thrips and coleopteran/lepidopteran larvae in integrated pest management (IPM) programmes. It is also a key pollinator of a wide variety of important agricultural crops. No genomic information is currently available for S. rueppellii. Without genomic information for such beneficial predator species, we are unable to perform comparative analyses of insecticide target-sites and genes encoding metabolic enzymes potentially responsible for insecticide resistance, between crop pests and their predators. These metabolic mechanisms include several gene families - cytochrome P450 monooxygenases (P450s), ATP binding cassette transporters (ABCs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs) and carboxyl/choline esterases (CCEs). METHODS AND FINDINGS: In this study, a high-quality near-chromosome level de novo genome assembly (as well as a mitochondrial genome assembly) for S. rueppellii has been generated using a hybrid approach with PacBio long-read and Illumina short-read data, followed by super scaffolding using Hi-C data. The final assembly achieved a scaffold N50 of 87Mb, a total genome size of 537.6Mb and a level of completeness of 96% using a set of 1,658 core insect genes present as full-length genes. The assembly was annotated with 14,249 protein-coding genes. Comparative analysis revealed gene expansions of CYP6Zx P450s, epsilon-class GSTs, dietary CCEs and multiple UGT families (UGT37/302/308/430/431). Conversely, ABCs, delta-class GSTs and non-CYP6Zx P450s showed limited expansion. Differences were seen in the distributions of resistance-associated gene families across subfamilies between S. rueppellii and some hemipteran crop pests. Additionally, S. rueppellii had larger numbers of detoxification genes than other pollinator species. CONCLUSION AND SIGNIFICANCE: This assembly is the first published genome for a predatory member of the Syrphidae family and will serve as a useful resource for further research into selectivity and potential tolerance of insecticides by beneficial predators. Furthermore, the expansion of some gene families often linked to insecticide resistance and selectivity may be an indicator of the capacity of this predator to detoxify IPM selective insecticides. These findings could be exploited by targeted insecticide screens and functional studies to increase effectiveness of IPM strategies, which aim to increase crop yields by sustainably and effectively controlling pests without impacting beneficial predator populations.


Assuntos
Dípteros , Inseticidas , Animais , Cromossomos , Dípteros/genética , Tamanho do Genoma , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia
4.
PLoS Genet ; 15(2): e1007903, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716069

RESUMO

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/genética , Neonicotinoides/farmacologia , Animais , Evolução Biológica , Sistema Enzimático do Citocromo P-450/genética , Europa (Continente) , Genômica/métodos , Inseticidas/farmacologia , Polinização/efeitos dos fármacos , Polinização/genética , Tiazinas/farmacologia
5.
Age Ageing ; 50(2): 431-439, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32970798

RESUMO

BACKGROUND: Lower nurse staffing levels are associated with increased hospital mortality. Older patients with cognitive impairments (CI) have higher mortality rates than similar patients without CI and may be additionally vulnerable to low staffing. OBJECTIVES: To explore associations between registered nurse (RN) and nursing assistant (NA) staffing levels, mortality and readmission in older patients admitted to general medical/surgical wards. RESEARCH DESIGN: Retrospective cohort. PARTICIPANTS: All unscheduled admissions to an English hospital of people aged ≥75 with cognitive screening over 14 months. MEASURES: The exposure was defined as deviation in staffing hours from the ward daily mean, averaged across the patient stay. Outcomes were mortality in hospital/within 30 days of discharge and 30-day re-admission. Analyses were stratified by CI. RESULTS: 12,544 admissions were included. Patients with CI (33.2%) were exposed to similar levels of staffing as those without. An additional 0.5 RN hours per day was associated with 10% reduction in the odds of death overall (odds ratio 0.90 [95% CI 0.84-0.97]): 15% in patients with CI (OR 0.85 [0.74-0.98]) and 7% in patients without (OR 0.93 [0.85-1.02]). An additional 0.5 NA hours per day was associated with a 15% increase in mortality in patients with no impairment. Readmissions decreased by 6% for an additional 0.5 RN hours in patients with CI. CONCLUSIONS: Although exposure to low staffing was similar, the impact on mortality and readmission for patients with CI was greater. Increased mortality with higher NA staffing in patients without CI needs exploration.


Assuntos
Disfunção Cognitiva , Recursos Humanos de Enfermagem Hospitalar , Idoso , Disfunção Cognitiva/diagnóstico , Mortalidade Hospitalar , Hospitais , Humanos , Readmissão do Paciente , Admissão e Escalonamento de Pessoal , Estudos Retrospectivos , Recursos Humanos
6.
Mol Ecol ; 29(14): 2661-2675, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510730

RESUMO

The evolution of resistance to drugs and pesticides poses a major threat to human health and food security. Neonicotinoids are highly effective insecticides used to control agricultural pests. They target the insect nicotinic acetylcholine receptor and mutations of the receptor that confer resistance have been slow to develop, with only one field-evolved mutation being reported to date. This is an arginine-to-threonine substitution at position 81 of the nAChR_ß1 subunit in neonicotinoid-resistant aphids. To validate the role of R81T in neonicotinoid resistance and to test whether it may confer any significant fitness costs to insects, CRISPR/Cas9 was used to introduce an analogous mutation in the genome of Drosophila melanogaster. Flies carrying R81T showed an increased tolerance (resistance) to neonicotinoid insecticides, accompanied by a significant reduction in fitness. In comparison, flies carrying a deletion of the whole nAChR_α6 subunit, the target site of spinosyns, showed an increased tolerance to this class of insecticides but presented almost no fitness deficits.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Aptidão Genética , Resistência a Inseticidas , Neonicotinoides , Receptores Nicotínicos/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Mutação , Neonicotinoides/toxicidade
7.
Pestic Biochem Physiol ; 166: 104562, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448417

RESUMO

The buff-tailed bumblebee, Bombus terrestris audax is an important pollinator within both landscape ecosystems and agricultural crops. During their lifetime bumblebees are regularly challenged by various environmental stressors including insecticides. Historically the honey bee (Apis mellifera spp.) has been used as an 'indicator' species for 'standard' ecotoxicological testing, but it has been suggested that it is not always a good proxy for other eusocial or solitary bees. To investigate this, the susceptibility of B. terrestris to selected pesticides within the neonicotinoid, pyrethroid and organophosphate classes was examined using acute insecticide bioassays. Acute oral and topical LD50 values for B. terrestris against these insecticides were broadly consistent with published results for A. mellifera. For the neonicotinoids, imidacloprid was highly toxic, but thiacloprid and acetamiprid were practically non-toxic. For pyrethroids, deltamethrin was highly toxic, but tau-fluvalinate only slightly toxic. For the organophosphates, chlorpyrifos was highly toxic, but coumaphos practically non-toxic. Bioassays using insecticides with common synergists enhanced the sensitivity of B. terrestris to several insecticides, suggesting detoxification enzymes may provide a level of protection against these compounds. The sensitivity of B. terrestris to compounds within three different insecticide classes is similar to that reported for honey bees, with marked variation in sensitivity to different insecticides within the same insecticide class observed in both species. This finding highlights the need to consider each compound within an insecticide class in isolation rather than extrapolating between different insecticides in the same class or sharing the same mode of action.


Assuntos
Inseticidas , Animais , Abelhas , Combinação de Medicamentos , Ecossistema , Glicerol , Salicilatos
8.
Crop Prot ; 138: 105316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33273750

RESUMO

The cabbage stem flea beetle, Psylliodes chrysocephala L. is a major pest of winter oilseed rape in several European countries. Traditionally, neonicotinoid and pyrethroid insecticides have been widely used for control of P. chrysocephala, but in recent years, following the withdrawal of neonicotinoid insecticide seed treatments, control failures have occurred due to an over reliance on pyrethroids. In line with previous surveys, UK populations of P. chrysocephala were found to exhibit high levels of resistance to the pyrethroid lambda-cyhalothrin. This resistance was suppressed by pre-treatment with the cytochrome P450 inhibitor PBO under laboratory conditions, suggesting that the resistance has a strong metabolic component. The L1014F (kdr) mutation in the voltage-gated sodium channel, which confers relatively low levels (10-20 fold) of resistance to pyrethroids, was also found to be widespread across the UK regions sampled, whereas the L925I (s-kdr) mutation was much less common. The current survey also suggests that higher levels of pyrethroid resistance have spread to the North and West of England, and that resistance levels continue to remain high in the South East.

9.
Eur Biophys J ; 46(7): 675-679, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28070661

RESUMO

The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.


Assuntos
Inseticidas/farmacologia , Piretrinas/farmacologia , Agonistas do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Agonistas do Canal de Sódio Disparado por Voltagem/química
10.
Mol Ecol ; 25(22): 5692-5704, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748560

RESUMO

Many genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping. Sequencing of the α6 subunit cDNA from spinosad selected and unselected strains of T. absoluta revealed all Taα6 transcripts of the selected strain were devoid of exon 3, with comparison of genomic DNA and mRNA revealing this is a result of exon skipping. Exon skipping cosegregated with spinosad resistance in survival bioassays, and functional characterization of this alteration using modified human nAChR α7, a model of insect α6, demonstrated that exon 3 is essential for receptor function and hence spinosad sensitivity. DNA and RNA sequencing analyses suggested that exon skipping did not result from genetic alterations in intronic or exonic cis-regulatory elements, but rather was associated with a single epigenetic modification downstream of exon 3a, and quantitative changes in the expression of trans-acting proteins that have known roles in the regulation of alternative splicing. Our results demonstrate that the intrinsic capacity of the α6 gene to generate transcript diversity via alternative splicing can be readily exploited during the evolution of resistance and identifies exon skipping as a molecular alteration conferring insecticide resistance.


Assuntos
Processamento Alternativo , Éxons , Insetos/genética , Resistência a Inseticidas/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Animais , Combinação de Medicamentos , Humanos , Macrolídeos
11.
Proc Natl Acad Sci U S A ; 110(48): 19460-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218582

RESUMO

Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.


Assuntos
Adaptação Biológica/genética , Afídeos/enzimologia , Repetições de Dinucleotídeos/genética , Amplificação de Genes/genética , Nicotiana/parasitologia , Polimorfismo Genético/genética , Animais , Afídeos/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sequência de Bases , Cromatografia Líquida , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Mutação/genética , Nicotina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
12.
Proc Biol Sci ; 282(1818): 20151821, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511042

RESUMO

A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a 'restatement') intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281, 20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Animais , União Europeia , Insetos/efeitos dos fármacos , Polinização
13.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850927

RESUMO

There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.


Assuntos
Anabasina/análogos & derivados , Anabasina/toxicidade , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Animais , Polinização
14.
Pest Manag Sci ; 80(5): 2383-2392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37899495

RESUMO

BACKGROUND: Current European Union and United Kingdom legislation prohibits the use of neonicotinoid insecticidal seed treatments in oilseed rape (OSR, Brassica napus). This ban, and the reduction in efficacy of pyrethroid insecticide sprays due to resistance, has exacerbated pest pressure from the cabbage stem flea beetle (Psylliodes chrysocephala) in winter OSR. We quantified the direct impact of P. chrysocephala injury on the productivity of OSR. Leaf area was removed from young plants to simulate differing intensities of adult feeding injury alone or in combination with varying larval infestation levels. RESULTS: OSR can compensate for up to 90% leaf area loss at early growth stages, with no meaningful effect on yield. Significant impacts were observed with high infestations of more than five larvae per plant; plants were shorter, produced fewer flowers and pods, with fewer seeds per pod which had lower oil content and higher glucosinolate content. Such effects were not recorded when five larvae or fewer were present. CONCLUSION: These data confirm the yield-limiting potential of the larval stages of P. chrysocephala but suggest that the current action thresholds which trigger insecticide application for both adult and larval stages (25% leaf area loss and five larvae/plant, respectively) are potentially too low as they are below the physiological injury level where plants can fully compensate for damage. Further research in field conditions is needed to define physiological thresholds more accurately as disparity may result in insecticide applications that are unnecessary to protect yield and may in turn exacerbate the development and spread of insecticide resistance in P. chrysocephala. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica napus , Besouros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Resistência a Inseticidas , Larva
15.
BMC Genomics ; 14: 636, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053512

RESUMO

BACKGROUND: One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone biosynthesis and transport could offer potential targets for disruption of their chemical communication and for crop protection. RESULTS: Here we report 454 next-generation sequencing of the A. ipsilon pheromone gland transcriptome, identification and expression profiling of genes putatively involved in pheromone production, transport and degradation. A total of 23473 unigenes were obtained from the transcriptome analysis, 86% of which were A. ipsilon specific. 42 transcripts encoded enzymes putatively involved in pheromone biosynthesis, of which 15 were specifically, or mainly, expressed in the pheromone glands at 5 to 120-fold higher levels than in the body. Two transcripts encoding for a fatty acid synthase and a desaturase were highly abundant in the transcriptome and expressed more than 40-fold higher in the glands than in the body. The transcripts encoding for 2 acetyl-CoA carboxylases, 1 fatty acid synthase, 2 desaturases, 3 acyl-CoA reductases, 2 alcohol oxidases, 2 aldehyde reductases and 3 acetyltransferases were expressed at a significantly higher level in the pheromone glands than in the body. 17 esterase transcripts were not gland-specific and 7 of these were expressed highly in the antennae. Seven transcripts encoding odorant binding proteins (OBPs) and 8 encoding chemosensory proteins (CSPs) were identified. Two CSP transcripts (AipsCSP2, AipsCSP8) were highly abundant in the pheromone gland transcriptome and this was confirmed by qRT-PCR. One OBP (AipsOBP6) were pheromone gland-enriched and three OBPs (AipsOBP1, AipsOBP2 and AipsOBP4) were antennal-enriched. Based on these studies we proposed possible A. ipsilon biosynthesis pathways for major and minor sex pheromone components. CONCLUSIONS: Our study identified genes potentially involved in sex pheromone biosynthesis and transport in A. ipsilon. The identified genes are likely to play essential roles in sex pheromone production, transport and degradation and could serve as targets to interfere with pheromone release. The identification of highly expressed CSPs and OBPs in the pheromone gland suggests that they may play a role in the binding, transport and release of sex pheromones during sex pheromone production in A. ipsilon and other Lepidoptera insects.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Atrativos Sexuais/biossíntese , Transcriptoma , Animais , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Masculino , Redes e Vias Metabólicas/genética , Análise de Sequência de DNA , Atrativos Sexuais/genética
16.
Proc Natl Acad Sci U S A ; 107(19): 8575-80, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20439757

RESUMO

N,N-Diethyl-m-toluamide (DEET) is one of the most effective and commonly used mosquito repellents. However, during laboratory trials a small proportion of mosquitoes are still attracted by human odors despite the presence of DEET. In this study behavioral assays identified Aedes aegypti females that were insensitive to DEET, and the selection of either sensitive or insensitive groups of females with males of unknown sensitivity over several generations resulted in two populations with different proportions of insensitive females. Crossing experiments showed the "insensitivity" trait to be dominant. Electroantennography showed a reduced response to DEET in the selected insensitive line compared with the selected sensitive line, and single sensillum recordings identified DEET-sensitive sensilla that were nonresponders in the insensitive line. This study suggests that behavioral insensitivity to DEET in A. aegypti is a genetically determined dominant trait and resides in changes in sensillum function.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Estruturas Animais/fisiologia , Comportamento Animal/efeitos dos fármacos , DEET/farmacologia , Característica Quantitativa Herdável , Aedes/ultraestrutura , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/ultraestrutura , Animais , Cruzamentos Genéticos , Feminino , Resistência a Inseticidas/efeitos dos fármacos , Masculino , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Seleção Genética
17.
PLoS Genet ; 6(6): e1000999, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585623

RESUMO

The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.


Assuntos
Afídeos/genética , Sistema Enzimático do Citocromo P-450/genética , Amplificação de Genes/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Nicotina/farmacologia , Animais , Afídeos/química , Afídeos/efeitos dos fármacos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Dosagem de Genes , Proteínas de Insetos/química , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Alinhamento de Sequência
18.
Biochemistry ; 51(23): 4627-9, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22631603

RESUMO

Neonicotinoid insecticides target nicotinic acetylcholine receptors (nAChR) in the nervous system of insects but are largely ineffective against ticks. This study aimed to identify the molecular basis for this insensitivity. A homology model of the nAChR binding domain was generated on the basis of the crystal structure of an acetylcholine-binding protein with the insecticide imidacloprid bound. We hypothesized that tick ß-subunits would differ at a critical residue (Arg81) in their D loops. To test this, we sequenced nAChR genes from five tick species and found that instead of the conserved arginine found in insects, a glutamine was present in all the tick sequences.


Assuntos
Niacina/análogos & derivados , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Carrapatos/metabolismo , Acaricidas/farmacologia , Sequência de Aminoácidos , Animais , Resistência a Inseticidas , Modelos Moleculares , Biologia Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Carrapatos/efeitos dos fármacos
19.
Cell Mol Life Sci ; 68(10): 1799-813, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20957509

RESUMO

To understand olfactory discrimination in Anopheles gambiae, we made six purified recombinant OBPs and investigated their ligand-binding properties. All OBPs were expressed in bacteria with additional production of OBP47 in the yeast Kluveromyces lactis. Ligand-binding experiments, performed with a diverse set of organic compounds, revealed marked differences between the OBPs. Using the fluorescent probe N-phenyl-1-naphthylamine, we also measured the binding curves for binary mixtures of OBPs and obtained, in some cases, unexpected behaviour, which could only be explained by the OBPs forming heterodimers with binding characteristics different from those of the component proteins. This shows that OBPs in mosquitoes can form complexes with novel ligand specificities, thus amplifying the repertoire of OBPs and the number of semiochemicals that can be discriminated. Confirmation of the likely role of heterodimers was demonstrated by in situ hybridisation, suggesting that OBP1 and OBP4 are co-expressed in some antennal sensilla of A. gambiae.


Assuntos
Anopheles/metabolismo , Receptores Odorantes/metabolismo , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Dimerização , Corantes Fluorescentes/farmacologia , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensilas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
BMC Neurosci ; 12: 51, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21627790

RESUMO

BACKGROUND: Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. RESULTS: Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpß1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR ß1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T). CONCLUSION: Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of neonicotinoid binding and selectivity for insect nAChRs.


Assuntos
Afídeos/genética , Colinérgicos/farmacologia , Imidazóis/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Receptores Nicotínicos/genética , Animais , Afídeos/metabolismo , Resistência a Inseticidas/genética , Mutação , Neonicotinoides , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA