Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 93(4): 830-843, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546684

RESUMO

OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença dos Neurônios Motores , Humanos , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Apolipoproteína E2/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E3 , Gliose/genética , Proteínas de Ligação a DNA/genética , Apolipoproteínas E/genética , Degeneração Lobar Frontotemporal/patologia
2.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641715

RESUMO

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cerebelo , Degeneração Lobar Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Transcriptoma
3.
Brain ; 145(7): 2472-2485, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918030

RESUMO

Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Progranulinas , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Progranulinas/genética , Progranulinas/metabolismo , Transcriptoma
4.
Brain ; 144(4): 1082-1088, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33889947

RESUMO

To examine the length of a hexanucleotide expansion in C9orf72, which represents the most frequent genetic cause of frontotemporal lobar degeneration and motor neuron disease, we employed a targeted amplification-free long-read sequencing technology: No-Amp sequencing. In our cross-sectional study, we assessed cerebellar tissue from 28 well-characterized C9orf72 expansion carriers. We obtained 3507 on-target circular consensus sequencing reads, of which 814 bridged the C9orf72 repeat expansion (23%). Importantly, we observed a significant correlation between expansion sizes obtained using No-Amp sequencing and Southern blotting (P = 5.0 × 10-4). Interestingly, we also detected a significant survival advantage for individuals with smaller expansions (P = 0.004). Additionally, we uncovered that smaller expansions were significantly associated with higher levels of C9orf72 transcripts containing intron 1b (P = 0.003), poly(GP) proteins (P = 1.3 × 10- 5), and poly(GA) proteins (P = 0.005). Thorough examination of the composition of the expansion revealed that its GC content was extremely high (median: 100%) and that it was mainly composed of GGGGCC repeats (median: 96%), suggesting that expanded C9orf72 repeats are quite pure. Taken together, our findings demonstrate that No-Amp sequencing is a powerful tool that enables the discovery of relevant clinicopathological associations, highlighting the important role played by the cerebellar size of the expanded repeat in C9orf72-linked diseases.


Assuntos
Proteína C9orf72/genética , Doenças Neurodegenerativas/genética , Análise de Sequência de DNA/métodos , Idoso , Cerebelo/metabolismo , Estudos Transversais , Expansão das Repetições de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Brain ; 143(6): 1905-1919, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504082

RESUMO

Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica/genética , Haplótipos , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
6.
Am J Hum Genet ; 97(3): 465-74, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279204

RESUMO

Penttinen syndrome is a distinctive disorder characterized by a prematurely aged appearance with lipoatrophy, epidermal and dermal atrophy along with hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, and marked acro-osteolysis. All individuals have been simplex cases. Exome sequencing of an affected individual identified a de novo c.1994T>C p.Val665Ala variant in PDGFRB, which encodes the platelet-derived growth factor receptor ß. Three additional unrelated individuals with this condition were shown to have the identical variant in PDGFRB. Distinct mutations in PDGFRB have been shown to cause infantile myofibromatosis, idiopathic basal ganglia calcification, and an overgrowth disorder with dysmorphic facies and psychosis, none of which overlaps with the clinical findings in Penttinen syndrome. We evaluated the functional consequence of this causative variant on the PDGFRB signaling pathway by transfecting mutant and wild-type cDNA into HeLa cells, and transfection showed ligand-independent constitutive signaling through STAT3 and PLCγ. Penttinen syndrome is a clinically distinct genetic condition caused by a PDGFRB gain-of-function mutation that is associated with a specific and unusual perturbation of receptor function.


Assuntos
Acro-Osteólise/genética , Acro-Osteólise/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação Puntual/genética , Progéria/genética , Progéria/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , DNA Complementar/genética , Feminino , Genes Dominantes/genética , Células HeLa , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fosforilação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Tempo
7.
Acta Neuropathol ; 134(2): 255-269, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28508101

RESUMO

A growing body of evidence suggests that a loss of chromosome 9 open reading frame 72 (C9ORF72) expression, formation of dipeptide-repeat proteins, and generation of RNA foci contribute to disease pathogenesis in amyotrophic lateral sclerosis and frontotemporal dementia. Although the levels of C9ORF72 transcripts and dipeptide-repeat proteins have already been examined thoroughly, much remains unknown about the role of RNA foci in C9ORF72-linked diseases. As such, we performed a comprehensive RNA foci study in an extensive pathological cohort of C9ORF72 expansion carriers (n = 63). We evaluated two brain regions using a newly developed computer-automated pipeline allowing recognition of cell nuclei and RNA foci (sense and antisense) supplemented by manual counting. In the frontal cortex, the percentage of cells with sense or antisense RNA foci was 26 or 12%, respectively. In the cerebellum, 23% of granule cells contained sense RNA foci and 1% antisense RNA foci. Interestingly, the highest percentage of cells with RNA foci was observed in cerebellar Purkinje cells (~70%). In general, more cells contained sense RNA foci than antisense RNA foci; however, when antisense RNA foci were present, they were usually more abundant. We also observed that an increase in the percentage of cells with antisense RNA foci was associated with a delayed age at onset in the frontal cortex (r = 0.43, p = 0.003), whereas no other associations with clinico-pathological features were seen. Importantly, our large-scale study is the first to provide conclusive evidence that RNA foci are not the determining factor of the clinico-pathological variability observed in C9ORF72 expansion carriers and it emphasizes that the distribution of RNA foci does not follow the pattern of neurodegeneration, stressing the complex interplay between different aspects of C9ORF72-related diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/patologia , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/patologia , Análise de Variância , Encéfalo/metabolismo , Estudos de Coortes , Processamento Eletrônico de Dados , Feminino , Demência Frontotemporal/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/classificação , Neurônios/metabolismo , Neurônios/patologia , RNA Antissenso/farmacologia , RNA Mensageiro/metabolismo
8.
Hum Mol Genet ; 23(6): 1467-78, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24163244

RESUMO

Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588₋593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Endocitose/efeitos dos fármacos , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Piridinas/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Demência Frontotemporal/patologia , Variação Genética , Células HEK293 , Haploinsuficiência , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfócitos/metabolismo , Progranulinas , Reprodutibilidade dos Testes
9.
Acta Neuropathol ; 130(6): 863-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437865

RESUMO

The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.


Assuntos
Cerebelo/metabolismo , Expansão das Repetições de DNA , Lobo Frontal/metabolismo , Proteínas/genética , Proteínas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Estudos de Associação Genética , Variação Genética , Heterozigoto , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Regiões Promotoras Genéticas , Análise de Sobrevida , Bancos de Tecidos
10.
Acta Neuropathol ; 130(1): 77-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943890

RESUMO

Frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained. In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8 %) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13-15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C-E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers. In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further add to the growing body of evidence linking ALS and FTD and suggest a key role for the OPTN/TBK1 pathway in these diseases.


Assuntos
Degeneração Lobar Frontotemporal/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição TFIIIA/genética , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Fator de Transcrição TFIIIA/metabolismo
11.
Hum Mutat ; 35(8): 964-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796542

RESUMO

Three causal genes for idiopathic basal ganglia calcification (IBGC) have been identified. Most recently, mutations in PDGFRB, encoding a member of the platelet-derived growth factor receptor family type ß, and PDGFB, encoding PDGF-B, the specific ligand of PDGFRß, were found implicating the PDGF-B/PDGFRß pathway in abnormal brain calcification. In this study, we aimed to identify and study mutations in PDGFRB and PDGFB in a series of 26 patients from the Mayo Clinic Florida Brain Bank with moderate to severe basal ganglia calcification (BCG) of unknown etiology. No mutations in PDGFB were found. However, we identified one mutation in PDGFRB, p.R695C located in the tyrosine kinase domain, in one BGC patient. We further studied the function of p.R695C mutant PDGFRß and two previously reported mutants, p.L658P and p.R987W PDGFRß in cell culture. We show that, in response to PDGF-BB stimulation, the p.L658P mutation completely suppresses PDGFRß autophosphorylation, whereas the p.R695C mutation results in partial loss of autophosphorylation. For the p.R987W mutation, our data suggest a different mechanism involving reduced protein levels. These genetic and functional studies provide the first insight into the pathogenic mechanisms associated with PDGFRB mutations and provide further support for a pathogenic role of PDGFRB mutations in BGC.


Assuntos
Doenças dos Gânglios da Base/genética , Calcinose/genética , Mutação , Doenças Neurodegenerativas/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Idoso , Idoso de 80 Anos ou mais , Autopsia , Doenças dos Gânglios da Base/patologia , Becaplermina , Calcinose/patologia , Expressão Gênica , Testes Genéticos , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Análise de Sequência de DNA , Transfecção
12.
Acta Neuropathol ; 127(3): 397-406, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385136

RESUMO

Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions [with or without motor neuron disease (MND); cohort 2], and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls [11.9 vs. 19.1 %, odds ratio (OR) 0.57, p = 0.014; same direction as carriers of GRN mutations]. The strongest evidence was provided by FTD patients (OR 0.33, p = 0.009) followed by FTD/MND patients (OR 0.38, p = 0.017), whereas no significant difference was observed in MND patients (OR 0.85, p = 0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR 0.77, p = 0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR 0.26, p < 0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.


Assuntos
Demência Frontotemporal/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Proteína C9orf72 , Estudos de Coortes , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Demência Frontotemporal/complicações , Demência Frontotemporal/metabolismo , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Doença dos Neurônios Motores/complicações , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Polimorfismo de Nucleotídeo Único
13.
Alzheimers Res Ther ; 16(1): 66, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539243

RESUMO

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Assuntos
Demência Frontotemporal , Masculino , Humanos , Feminino , Progranulinas/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Virulência , Mutação/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
14.
J Neurochem ; 126(6): 781-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23742080

RESUMO

Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD-TDP). Recently, a genome-wide association study identified the first FTLD-TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD-TDP risk. Intriguingly, the most significant association was in FTLD-TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD-TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B-specific antibody for investigation of this protein. Enzyme-linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over-expression. However, over-expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N-glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD-TDP risk. We studied the p.T185S TMEM106B genetic variant previously implicated in frontotemporal dementia with TAR DNA binding protein 43 pathology caused by progranulin mutations. Our cell culture studies provide evidence that the protective S185 isoform is degraded more rapidly than T185 TMEM106B, potentially due to differences in glycosylation. These findings suggest that low TMEM106B levels might protect against FTLD-TDP in these patients.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Idoso , Western Blotting , Células Cultivadas , Estudos de Coortes , DNA Complementar/biossíntese , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Genótipo , Glicosilação , Células HeLa , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isomerismo , Lisossomos/metabolismo , Masculino , Mutagênese/genética , Mutação/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Progranulinas , Reação em Cadeia da Polimerase em Tempo Real
15.
Am J Hum Genet ; 87(6): 890-7, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21087763

RESUMO

Recent studies suggest progranulin (GRN) is a neurotrophic factor. Loss-of-function mutations in the progranulin gene (GRN) cause frontotemporal lobar degeneration (FTLD), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Using an enzyme-linked immunosorbent assay, we previously showed that GRN is detectable in human plasma and can be used to predict GRN mutation status. This study also showed a wide range in plasma GRN levels in non-GRN mutation carriers, including controls. We have now performed a genome-wide association study of 313,504 single-nucleotide polymorphisms (SNPs) in 533 control samples and identified on chromosome 1p13.3 two SNPs with genome-wide significant association with plasma GRN levels (top SNP rs646776; p = 1.7 × 10⁻³°). The association of rs646776 with plasma GRN levels was replicated in two independent series of 508 controls (p = 1.9 × 10⁻¹9) and 197 FTLD patients (p = 6.4 × 10⁻¹²). Overall, each copy of the minor C allele decreased GRN levels by ∼15%. SNP rs646776 is located near sortilin (SORT1), and the minor C allele of rs646776 was previously associated with increased SORT1 mRNA levels. Supporting these findings, overexpression of SORT1 in cultured HeLa cells dramatically reduced GRN levels in the conditioned media, whereas knockdown of SORT1 increased extracellular GRN levels. In summary, we identified significant association of a locus on chromosome 1p13.3 with plasma GRN levels through an unbiased genome-wide screening approach and implicated SORT1 as an important regulator of GRN levels. This finding opens avenues for future research into GRN biology and the pathophysiology of neurodegenerative diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Estudo de Associação Genômica Ampla , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Cromossomos Humanos Par 1 , Estudos de Coortes , Degeneração Lobar Frontotemporal/genética , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Progranulinas
16.
BMC Genomics ; 12: 527, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22032330

RESUMO

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs) have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP) caused by genetic mutations in the progranulin (PGRN) gene. RESULTS: Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P < 0.05) of dysregulation in frontal cortex of eight FTLD-TDP patients carrying PGRN mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR) analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p) were also significantly dysregulated (unadjusted P < 0.05) in cerebellar tissue samples of PGRN mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology. CONCLUSIONS: Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by PGRN mutations and provides new insight into potential future therapeutic options.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cerebelo/metabolismo , Cerebelo/patologia , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Progranulinas , Precursores de Proteínas/genética
17.
Alzheimer Dis Assoc Disord ; 25(4): 364-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21346515

RESUMO

BACKGROUND: Hippocampal sclerosis (HpScl) in the elderly is often associated with neurodegeneration. METHODS: We studied the clinical and pathologic features of HpScl in 205 consecutive patients with dementia who came to autopsy from 1997 to 2008, focusing on associations with TAR DNA-binding protein 43 (TDP-43) pathology and allelic variants in the progranulin (GRN) and apolipoprotein E (APOE). RESULTS: Of the 205 dementia patients, 28 had HpScl (14%). TDP-43 pathology was more frequent in cases with HpScl compared with those without HpScl (89% vs. 24%). GRN rs5848 T-allele but not APOE ε4 was associated with HpScl. In cases of HpScl with TDP-43 pathology and age of onset after 75 years (n=11), 8 had Alzheimer disease (AD)-like amnestic syndrome, but most (6 of 8) had pathology not consistent with AD (Braak stage III or less), including 4 with frontotemporal lobar degeneration with TDP, 1 with diffuse Lewy body disease, and 1 with "pure HpScl." CONCLUSIONS: HpScl is common in an elderly cohort with dementia, occurring in 14% of the cases in this series, and 89% have TDP-43 pathology, often associated with a risk variant in GRN. Patients with HpScl who present after the age of 75 years often have presentations consistent with AD, but at autopsy have non-Alzheimer pathologies. Elderly patients with HpScl may be mistaken for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Hipocampo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Esclerose
18.
PLoS Genet ; 4(9): e1000193, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18802454

RESUMO

The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Linhagem
19.
Hum Mutat ; 31(5): E1377-89, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20232451

RESUMO

Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402_P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Adulto Jovem
20.
Hum Mol Genet ; 17(23): 3631-42, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18723524

RESUMO

Loss-of-function mutations in progranulin (GRN) cause ubiquitin- and TAR DNA-binding protein 43 (TDP-43)-positive frontotemporal dementia (FTLD-U), a progressive neurodegenerative disease affecting approximately 10% of early-onset dementia patients. Here we expand the role of GRN in FTLD-U and demonstrate that a common genetic variant (rs5848), located in the 3'-untranslated region (UTR) of GRN in a binding-site for miR-659, is a major susceptibility factor for FTLD-U. In a series of pathologically confirmed FTLD-U patients without GRN mutations, we show that carriers homozygous for the T-allele of rs5848 have a 3.2-fold increased risk to develop FTLD-U compared with homozygous C-allele carriers (95% CI: 1.50-6.73). We further demonstrate that miR-659 can regulate GRN expression in vitro, with miR-659 binding more efficiently to the high risk T-allele of rs5848 resulting in augmented translational inhibition of GRN. A significant reduction in GRN protein was observed in homozygous T-allele carriers in vivo, through biochemical and immunohistochemical methods, mimicking the effect of heterozygous loss-of-function GRN mutations. In support of these findings, the neuropathology of homozygous rs5848 T-allele carriers frequently resembled the pathological FTLD-U subtype of GRN mutation carriers. We suggest that the expression of GRN is regulated by miRNAs and that common genetic variability in a miRNA binding-site can significantly increase the risk for FTLD-U. Translational regulation by miRNAs may represent a common mechanism underlying complex neurodegenerative disorders.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Demência/genética , Variação Genética , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/metabolismo , Idoso , Sequência de Bases , Sítios de Ligação , Encéfalo/metabolismo , Demência/metabolismo , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , MicroRNAs/química , MicroRNAs/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Progranulinas , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA