Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cerebellum ; 22(1): 46-58, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079958

RESUMO

This study aimed to assess the ability of 25 gait indices to characterize gait instability and recurrent fallers among persons with primary degenerative cerebellar ataxia (pwCA), regardless of gait speed, and investigate their correlation with clinical and kinematic variables. Trunk acceleration patterns were acquired during the gait of 34 pwCA, and 34 age- and speed-matched healthy subjects (HSmatched) using an inertial measurement unit. We calculated harmonic ratios (HR), percent recurrence, percent determinism, step length coefficient of variation, short-time largest Lyapunov exponent (sLLE), normalized jerk score, log-dimensionless jerk (LDLJ-A), root mean square (RMS), and root mean square ratio of accelerations (RMSR) in each spatial direction for each participant. Unpaired t-tests or Mann-Whitney tests were performed to identify significant differences between the pwCA and HSmatched groups. Receiver operating characteristics were plotted to assess the ability to characterize gait alterations in pwCA and fallers. Optimal cutoff points were identified, and post-test probabilities were calculated. The HRs showed to characterize gait instability and pwCA fallers with high probabilities. They were correlated with disease severity and stance, swing, and double support duration, regardless of gait speed. sLLEs, RMSs, RMSRs, and LDLJ-A were slightly able to characterize the gait of pwCA but failed to characterize fallers.


Assuntos
Ataxia Cerebelar , Transtornos Neurológicos da Marcha , Humanos , Caminhada , Equilíbrio Postural , Marcha , Aceleração , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia
2.
Cerebellum ; 19(4): 583-596, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32410093

RESUMO

The aim of this study was to investigate the time-varying multi-muscle coactivation function (TMCf) in the lower limbs during gait and its relationship with the biomechanical and clinical features of patients with cerebellar ataxia. A total of 23 patients with degenerative cerebellar ataxia (16 with spinocerebellar ataxia, 7 with adult-onset ataxia of unknown etiology) and 23 age-, sex-, and speed-matched controls were investigated. The disease severity was assessed using the Scale for the Assessment and Rating of Ataxia (SARA) in all patients. During walking, simultaneous acquisition of kinematic, kinetic, and electromyography data was performed using a motion analysis system. The coactivation was processed throughout the gait cycle using the TMCf, and the following parameters were measured: synthetic coactivation index, full width at half maximum, and center of activity. Spatiotemporal (walking speed, stance duration, swing duration, first and second double-support durations, step length, step width, stride length, Center of Mass displacement), kinetic (vertical component of GRFs), and energy consumption (total energy consumption and mechanical energy recovered) parameters were also measured. The coactivation variables were compared between patients and controls and were correlated with both clinical and gait variables. A significantly increased global TMCf was found in patients compared with controls. In addition, the patients showed a significant shift of the center of activity toward the initial contact and a significant reduction in energy recovery. All coactivation parameters were negatively correlated with gait speed, whereas the coactivation index and center of activity were positively correlated with both center-of-mass mediolateral displacement values and SARA scores. Our findings suggest that patients use global coactivation as a compensatory mechanism during the earliest and most challenging subphase (loading response) of the gait cycle to reduce the lateral body sway, thus improving gait stability at the expense of effective energy recovery. This information could be helpful in optimizing rehabilitative treatment aimed at improving lower limb muscle control during gait in patients with cerebella ataxia.


Assuntos
Ataxia Cerebelar/complicações , Ataxia Cerebelar/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Análise da Marcha , Transtornos Neurológicos da Marcha/etiologia , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Caminhada/fisiologia
3.
Sensors (Basel) ; 20(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365715

RESUMO

The aim of this study was to analyze the effect of the level of amputation and various prosthetic devices on the muscle activation of the sound limb in people with unilateral transfemoral and transtibial amputation. We calculated the global coactivation of 12 muscles using the time-varying multimuscle coactivation function method in 37 subjects with unilateral transfemoral amputation (10, 16, and 11 with mechanical, electronic, and bionic prostheses, respectively), 11 subjects with transtibial amputation, and 22 healthy subjects representing the control group. The results highlighted that people with amputation had a global coactivation temporal profile similar to that of healthy subjects. However, amputation increased the level of the simultaneous activation of many muscles during the loading response and push-off phases of the gait cycle and decreased it in the midstance and swing subphases. This increased coactivation probably plays a role in prosthetic gait asymmetry and energy consumption. Furthermore, people with amputation and wearing electronic prosthesis showed lower global coactivation when compared with people wearing mechanical and bionic prostheses. These findings suggest that the global lower limb coactivation behavior can be a useful tool to analyze the motor control strategies adopted and the ability to adapt to the prosthetic device.


Assuntos
Amputados , Membros Artificiais , Marcha/fisiologia , Músculos/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético , Caminhada , Adulto Jovem
4.
Bioengineering (Basel) ; 11(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534562

RESUMO

The central nervous system (CNS) controls movements and regulates joint stiffness with muscle co-activation, but until now, few studies have examined muscle pairs during running. This study aims to investigate differences in lower limb muscle coactivation during gait at different speeds, from walking to running. Nineteen healthy runners walked and ran at speeds ranging from 0.8 km/h to 9.3 km/h. Twelve lower limb muscles' co-activation was calculated using the time-varying multi-muscle co-activation function (TMCf) with global, flexor-extension, and rostro-caudal approaches. Spatiotemporal and kinematic parameters were also measured. We found that TMCf, spatiotemporal, and kinematic parameters were significantly affected by gait speed for all approaches. Significant differences were observed in the main parameters of each co-activation approach and in the spatiotemporal and kinematic parameters at the transition between walking and running. In particular, significant differences were observed in the global co-activation (CIglob, main effect F(1,17) = 641.04, p < 0.001; at the transition p < 0.001), the stride length (main effect F(1,17) = 253.03, p < 0.001; at the transition p < 0.001), the stride frequency (main effect F(1,17) = 714.22, p < 0.001; at the transition p < 0.001) and the Center of Mass displacement in the vertical (CoMy, main effect F(1,17) = 426.2, p < 0.001; at the transition p < 0.001) and medial-lateral (CoMz, main effect F(1,17) = 120.29 p < 0.001; at the transition p < 0.001) directions. Regarding the correlation analysis, the CoMy was positively correlated with a higher CIglob (r = 0.88, p < 0.001) and negatively correlated with Full Width at Half Maximum (FWHMglob, r = -0.83, p < 0.001), whereas the CoMz was positively correlated with the global Center of Activity (CoAglob, r = 0.97, p < 0.001). Positive and negative strong correlations were found between global co-activation parameters and center of mass displacements, as well as some spatiotemporal parameters, regardless of gait speed. Our findings suggest that walking and running have different co-activation patterns and kinematic characteristics, with the whole-limb stiffness exerted more synchronously and stably during running. The co-activation indexes and kinematic parameters could be the result of global co-activation, which is a sensory-control integration process used by the CNS to deal with more demanding and potentially unstable tasks like running.

5.
Front Hum Neurosci ; 17: 1106298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845879

RESUMO

Goal-oriented actions often require the coordinated movement of two or more effectors. Sometimes multi-effector movements need to be adjusted according to a continuously changing environment, requiring stopping an effector without interrupting the movement of the others. This form of control has been investigated by the selective Stop Signal Task (SST), requiring the inhibition of an effector of a multicomponent action. This form of selective inhibition has been hypothesized to act through a two-step process, where a temporary global inhibition deactivating all the ongoing motor responses is followed by a restarting process that reactivates only the moving effector. When this form of inhibition takes place, the reaction time (RT) of the moving effector pays the cost of the previous global inhibition. However, it is poorly investigated if and how this cost delays the RT of the effector that was required to be stopped but was erroneously moved (Stop Error trials). Here we measure the Stop Error RT in a group of participants instructed to simultaneously rotate the wrist and lift the foot when a Go Signal occurred, and interrupt both movements (non-selective Stop version) or only one of them (selective Stop version) when a Stop Signal was presented. We presented this task in two experimental conditions to evaluate how different contexts can influence a possible proactive inhibition on the RT of the moving effector in the selective Stop versions. In one context, we provided the foreknowledge of the effector to be inhibited by presenting the same selective or non-selective Stop versions in the same block of trials. In a different context, while providing no foreknowledge of the effector(s) to be stopped, the selective and non-selective Stop versions were intermingled, and the information on the effector to be stopped was delivered at the time of the Stop Signal presentation. We detected a cost in both Correct and Error selective Stop RTs that was influenced by the different task conditions. Results are discussed within the framework of the race model related to the SST, and its relationship with a restart model developed for selective versions of this paradigm.

6.
Front Psychol ; 14: 1125066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008850

RESUMO

Interaction with the environment requires us to predict the potential reward that will follow our choices. Rewards could change depending on the context and our behavior adapts accordingly. Previous studies have shown that, depending on reward regimes, actions can be facilitated (i.e., increasing the reward for response) or interfered (i.e., increasing the reward for suppression). Here we studied how the change in reward perspective can influence subjects' adaptation strategy. Students were asked to perform a modified version of the Stop-Signal task. Specifically, at the beginning of each trial, a Cue Signal informed subjects of the value of the reward they would receive; in one condition, Go Trials were rewarded more than Stop Trials, in another, Stop Trials were rewarded more than Go Trials, and in the last, both trials were rewarded equally. Subjects participated in a virtual competition, and the reward consisted of points to be earned to climb the leaderboard and win (as in a video game contest). The sum of points earned was updated with each trial. After a learning phase in which the three conditions were presented separately, each subject performed 600 trials testing phase in which the three conditions were randomly mixed. Based on the previous studies, we hypothesized that subjects could employ different strategies to perform the task, including modulating inhibition efficiency, adjusting response speed, or employing a constant behavior across contexts. We found that to perform the task, subjects preferentially employed a strategy-related speed of response adjustment, while the duration of the inhibition process did not change significantly across the conditions. The investigation of strategic motor adjustments to reward's prospect is relevant not only to understanding how action control is typically regulated, but also to work on various groups of patients who exhibit cognitive control deficits, suggesting that the ability to inhibit can be modulated by employing reward prospects as motivational factors.

7.
Front Neurol ; 13: 968818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158952

RESUMO

Individuals of working age affected by neuromuscular disorders frequently experience issues with their capacity to get employment, difficulty at work, and premature work interruption. Anyway, individuals with a disability could be able to return to work, thanks to targeted rehabilitation as well as ergonomic and training interventions. Biomechanical and physiological indexes are important for evaluating motor and muscle performance and determining the success of job integration initiatives. Therefore, it is necessary to determinate which indexes from the literature are the most appropriate to evaluate the effectiveness and efficiency of the return-to-work programs. To identify current and future valuable indexes, this study uses a systematic literature review methodology for selecting articles published from 2011 to March 30, 2021 from Scopus, Web of Science, and PubMed and for checking the eligibility and the potential bias risks. The most used indexes for motor performance assessment were identified, categorized, and analyzed. This review revealed a great potential for kinetic, kinematic, surface electromyography, postural, and other biomechanical and physiological indexes to be used for job integration/reintegration. Indeed, wearable miniaturized sensors, kinematic, kinetic, and sEMG-based indexes can be used to control collaborative robots, classify residual motor functions, and assess pre-post-rehabilitation and ergonomic therapies.

8.
Sci Rep ; 10(1): 17126, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033343

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Gait Posture ; 80: 280-284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32563728

RESUMO

BACKGROUND: Subjects with transfemoral amputation (TFA) show an asymmetric gait pattern associated with a decreased ability to recover mechanical energy and an increased metabolic cost of walking. RESEARCH QUESTION: This study aimed to identify the spatio-temporal and kinematic gait variables correlated with mechanical energy values in subjects with TFA and to observe the ability of the identified parameters to discriminate between TFA and controls according to the type of prosthesis. METHODS: The gait of 40 subjects with TFA was evaluated with a motion 3-D optoelectronic system. Nine subjects wore a mechanical prosthesis (TFAm), seventeen a C-Leg prosthesis (TFAc), and fourteen a Genium prosthesis (TFAg). Spatio-temporal and pelvic kinematic parameters were measured. Energy recovery was measured relative to the whole-body center of mass (CoM) kinematics as the fraction of mechanical energy recovered during each walking step (R-step). Correlation tests and multiple linear regression analyses were used to evaluate the correlation and association between kinematic and energy variables, respectively. Receiver operating characteristics curves were plotted to assess the ability of the correlated parameter to distinguish subjects with TFA from controls, and optimal cutoff point values were calculated according to the type of prosthesis. RESULTS: Among the spatio-temporal and kinematic parameters correlated to R-step, only pelvic obliquity of the prosthetic side was significantly associated with R-step. It showed an excellent ability to discriminate between TFA and controls. Furthermore, pelvic obliquity showed an excellent discriminative ability in identifying TFAm and TFAc and a good discriminative ability in identifying TFAg from controls. SIGNIFICANCE: Pelvic obliquity plays an important role in energy recovery during gait for subjects using prosthetics. This information might be exploited to monitor the adaptation of subjects with TFA to prosthetic devices, to lower the energetic cost of walking potentially, and to reduce the long-term risks of secondary physical complications in prosthetic users.


Assuntos
Amputação Cirúrgica/efeitos adversos , Amputação Cirúrgica/reabilitação , Membros Artificiais , Fêmur/cirurgia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pelve/patologia , Adaptação Fisiológica , Adulto , Idoso , Fenômenos Biomecânicos , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Caminhada
10.
PLoS One ; 14(7): e0219364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276544

RESUMO

Vava'u, Kingdom of Tonga, is a well-established whale-watching destination in the South Pacific. Between July and October, the waters around the archipelago represent one of the most important breeding grounds for Oceania humpback whales (Megaptera novaeangliae). The Tongan government allows tourist swimming activities with whales and tour operators strongly promote the practice of swimming-with-whales, focusing primarily on mother-calf pairs. However, there is increasing evidence, derived from empirical research on swim-with-cetacean tourism, that this kind of interaction affects cetacean behaviour and can lead to negative effects on the cetaceans involved. This study represents the first assessment of humpback whales' behavioural responses to vessel and swimmer approaches in Vava'u. Fifty-six surveys took place during the 2016 and 2017 whale breeding seasons aboard dedicated research and tour vessels. Whale dive time, number of reorientation events, and respiration rates were documented in both the absence and presence of boats and swimmers. Vessel approach type, swimmer placement, and whale avoidance responses were also recorded. Results indicate that the average diving time and the proportion of time spent diving in the presence of swimming activities increased significantly for mother-calf pairs (F2,36 = 18.183, P < 0.001; F2,36 = 5.462, P = 0.009, respectively). Moreover, avoidance responses of whales towards tour vessels were observed for one third of vessel approaches (33.5%) and the avoidance rate was significantly affected by the boat approach type (95% CI: 20.7-69.2%, z = 3.50, P < 0.001). Finally, low levels of compliance to the existing Tongan swim-with-whales regulations were documented, in particular the stipulated whale resting time between interactions with tour operator vessels and swimmers was often not respected (38.4%). Vava'u is an important calving ground for the Oceania humpback whale population and these findings should be carefully considered by stakeholders in Tonga and at other locations where swim-with-whales opportunities are being undertaken. Effective strategies to reduce the risk of detrimental effects on the whales targeted by swimming activities, especially mother-calf pairs, are needed.


Assuntos
Comportamento Animal , Jubarte , Atividades de Lazer , Natação , Animais , Jubarte/fisiologia , Tonga
11.
Sci Rep ; 9(1): 8558, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189946

RESUMO

Unmanned aerial vehicles (UAVs) represent a novel and cost effective research tool to investigate cetacean behaviour, as conventional aircraft are expensive, limited in the altitude they can fly at and potentially disturb sensitive wildlife. In addition, the aerial observation from the UAVs allows assessment of cetacean behaviour from an advantageous perspective and can collect high spatial and temporal resolution data, providing the opportunity to gather accurate data about group size, age class and subsurface behaviour. However, concerns have been raised about the potential risks of disturbance to animals caused by the UAV's visual and acoustic stimuli. Boat-based surveys were conducted to assess the short-term behavioural responses of resting bottlenose dolphins (Tursiops truncatus) to a lightweight Vertical take-off and landing (VTOL) UAV flown at 10, 25, and 40 m altitude. Changes in group swim direction and frequencies of surface and aerial behavioural events were recorded from an anchored research vessel before (control) and during the aerial survey. The number of reorientation and tail slap events increased significantly between controls and flights when the UAV was flown at 10 m over the animals. In contrast, no significant differences were detected when the aircraft was flown at 25 and 40 m altitude. However, a precautionary approach is recommended for research applications requiring lower flight altitudes, with further research recommended to assess how different cetacean species and age class may respond to the UAV presence.


Assuntos
Aeronaves , Comportamento Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Animais
12.
Hum Mov Sci ; 66: 9-21, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30889496

RESUMO

The present study's aim was to identify the kinematic and kinetic gait patterns and to measure the energy consumption in people with amputation according to both the anatomical level of amputation and the type of prosthetic components in comparison with a control group matched for the gait speed. Fifteen subjects with unilateral transtibial amputation (TTA), forty with unilateral transfemoral amputation (TFA) (9 with mechanical, 17 with CLeg and 14 with Genium prosthesis) and forty healthy subjects were recruited. We computed the time-distance gait parameters; the range of angular motion (RoM) at hip, knee and ankle joints, and at the trunk and pelvis; the values of the 2 peaks of vertical force curve; the full width at half maximum (FWHM) and center of activity (CoA) of vertical force; the mechanical behavior in terms of energy recovery (R-step) and energy consumption. The main results were: i) both TTA and TFA show a common gait pattern characterized by a symmetric increase of step length, step width, double support duration, pelvic obliquity, trunk lateral bending and trunk rotation RoMs compared to control groups. They show also an asymmetric increase of stance duration and of Peak1 in non-amputated side and a decrease of ankle RoM in amputated side; ii) only TFA show a specific gait pattern, depending on the level of amputation, characterized by a symmetric reduction of R-step and an asymmetric decrease of stance duration, CoA and FWHM and an increase of Peak1 in the amputated side and of hip and knee RoM, CoA and FWHM in the non-amputated side; iii) people with amputation with Genium prosthesis show a longer step length and increased hip and knee RoMs compared to people with amputation with mechanical prosthesis who conversely show an increased pelvic obliquity: these are specific gait patterns depending of the type of prosthesis. In conclusion, we identified both common and specific gait patterns in people with amputation, either regardless of, or according to their level of amputation and the type of prosthetic component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA