Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1045-1051, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232959

RESUMO

Using scanning tunneling microscopy and spectroscopy, for a monolayer of transition metal dichalcogenide H-NbS2 grown by molecular beam epitaxy on graphene, we provide unambiguous evidence for a charge density wave (CDW) with a 3 × 3 superstructure, which is not present in bulk NbS2. Local spectroscopy displays a pronounced gap on the order of 20 meV at the Fermi level. Within the gap, low-energy features are present. The gap structure with its low-energy features is at variance with the expectation for a gap opening in the electronic band structure due to a CDW. Instead, comparison with ab initio calculations indicates that the observed gap structure must be attributed to combined electron-phonon quasiparticles. The phonons in question are the elusive amplitude and phase collective modes of the CDW transition. Our findings advance the understanding of CDW mechanisms in 2D materials and their spectroscopic signatures.

2.
ACS Nano ; 18(22): 14161-14175, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771774

RESUMO

Two ultimately thin vanadium-rich 2D materials based on VS2 are created via molecular beam epitaxy and investigated using scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functional theory (DFT) calculations. The controlled synthesis of stoichiometric single-layer VS2 or either of the two vanadium-rich materials is achieved by varying the sample coverage and sulfur pressure during annealing. Through annealing of small stoichiometric single-layer VS2 islands without S pressure, S-vacancies spontaneously order in 1D arrays, giving rise to patterned adsorption. Via the comparison of DFT calculations with scanning tunneling microscopy data, the atomic structure of the S-depleted phase, with a stoichiometry of V4S7, is determined. By depositing larger amounts of vanadium and sulfur, which are subsequently annealed in a S-rich atmosphere, self-intercalated ultimately thin V5S8-derived layers are obtained, which host 2 × 2 V-layers between sheets of VS2. We provide atomic models for the thinnest V5S8-derived structures. Finally, we use scanning tunneling spectroscopy to investigate the charge density wave observed in the 2D V5S8-derived islands.

3.
Langmuir ; 28(43): 15278-85, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23002810

RESUMO

We have studied the adsorption of thioacetic acid (TAAH) on Au(111) from solution deposition. The close proximity of the SH groups to CO groups makes this molecule very attractive for exploring the effect of the functional group on the stability of the S-C and S-Au bonds. Although thioacetic acid was supposed to decompose slowly in water by hydrolysis supplying hydrogen sulfide, this behavior is not expected in nonpolar solvents such as toluene or hexane. Therefore, we have used these solvents for TAAH self-assembly on the Au(111) surface. The characterization of the adsorbates has been done by electrochemical techniques, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM). We have found that even in nonpolar solvents thioacetic acid decomposes to S. The results have been discussed on the basis that the adsorbed species suffer a cleavage on the Au surface, leaving the S attached to it. The dissociation is a spontaneous process that reaches the final state very fast once it is energetically favorable, as can be interpreted from DFT calculations. The thioacetic acid adsorption reveals the strong effect that produces a functional group and the key role of the S-H bond cleavage in the self-assembly process.

4.
ACS Nano ; 14(7): 9176-9187, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32602698

RESUMO

The variation of the electronic structure normal to 1D defects in quasi-freestanding MoS2, grown by molecular beam epitaxy, is investigated through high resolution scanning tunneling spectroscopy at 5 K. Strong upward bending of valence and conduction bands toward the line defects is found for the 4|4E mirror twin boundary and island edges but not for the 4|4P mirror twin boundary. Quantized energy levels in the valence band are observed wherever upward band bending takes place. Focusing on the common 4|4E mirror twin boundary, density functional theory calculations give an estimate of its charging, which agrees well with electrostatic modeling. We show that the line charge can also be assessed from the filling of the boundary-localized electronic band, whereby we provide a measurement of the theoretically predicted quantized polarization charge at MoS2 mirror twin boundaries. These calculations elucidate the origin of band bending and charging at these 1D defects in MoS2. The 4|4E mirror twin boundary not only impairs charge transport of electrons and holes due to band bending, but holes are additionally subject to a potential barrier, which is inferred from the independence of the quantized energy landscape on either side of the boundary.

5.
Nat Commun ; 7: 13000, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721384

RESUMO

Non-collinear magnetization textures provide a route to novel device concepts in spintronics. These applications require laterally confined non-collinear magnets (NCM). A crucial aspect for potential applications is how the spatial proximity between the NCM and vacuum or another material impacts the magnetization texture on the nanoscale. We focus on a prototypical exchange-driven NCM given by the helical spin order of bilayer Fe on Cu(111). Spin-polarized scanning tunnelling spectroscopy and density functional theory reveal a nanosize- and proximity-driven modification of the electronic and magnetic structure of the NCM in interfacial contact with a ferromagnet or with vacuum. An intriguing non-collinearity between the local magnetization in the sample and the electronic magnetization probed above its surface results. It is a direct consequence of the spinor nature of electronic states in NCM. Our findings provide a possible route for advanced control of nanoscale spin textures by confinement.

6.
J Phys Condens Matter ; 26(39): 394008, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25212671

RESUMO

The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA