Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 62(2): 157-168, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105112

RESUMO

HIV-infected individuals are living longer on antiretroviral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First, we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across >80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA). We find that decreased HLA methylation is predictive of lower CD4 / CD8 T cell ratio, linking molecular aging, epigenetic regulation, and disease progression.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Infecções por HIV/genética , Antígenos HLA/genética , Envelhecimento/imunologia , Fármacos Anti-HIV/uso terapêutico , Relação CD4-CD8 , Estudos de Casos e Controles , Doença Crônica , Ilhas de CpG , Progressão da Doença , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/mortalidade , Antígenos HLA/imunologia , Humanos , Modelos Genéticos , Fenótipo , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
2.
Mol Cell ; 59(6): 931-40, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365380

RESUMO

Glaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a). We further show that the upregulation of homozygous SIX6 risk alleles (CC) leads to an increase in p16INK4a expression, with subsequent cellular senescence, as evidenced in a mouse model of elevated IOP and in human POAG eyes. Our data indicate that SIX6 and/or IOP promotes POAG by directly increasing p16INK4a expression, leading to RGC senescence in adult human retinas. Our study provides important insights linking genetic susceptibility to the underlying mechanism of RGC death and provides a unified theory of glaucoma pathogenesis.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Glaucoma de Ângulo Aberto/metabolismo , Proteínas de Homeodomínio/fisiologia , Células Ganglionares da Retina/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Morte Celular , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Regulação para Cima
3.
Nature ; 523(7562): 607-11, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200341

RESUMO

The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.


Assuntos
Catarata/tratamento farmacológico , Catarata/metabolismo , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Adulto , Sequência de Aminoácidos , Amiloide/química , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Amiloide/ultraestrutura , Animais , Sequência de Bases , Catarata/congênito , Catarata/genética , Catarata/patologia , Linhagem Celular , Criança , Cristalinas/química , Cristalinas/genética , Cristalinas/metabolismo , Cristalinas/ultraestrutura , Cães , Feminino , Humanos , Lanosterol/administração & dosagem , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Cristalino/patologia , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Linhagem , Agregação Patológica de Proteínas/patologia
4.
Proc Natl Acad Sci U S A ; 114(28): 7414-7419, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652331

RESUMO

The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis.


Assuntos
Metilação de DNA , Neoplasias/diagnóstico , Neoplasias/genética , Alelos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Ilhas de CpG , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Masculino , Metástase Neoplásica , Neoplasias/mortalidade , Prognóstico , Risco , Fatores de Tempo
5.
Nat Mater ; 16(11): 1155-1161, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29035356

RESUMO

An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive 'liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , DNA Tumoral Circulante , Metilação de DNA , Neoplasias Hepáticas , Modelos Biológicos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Masculino , Prognóstico
7.
Hum Genet ; 133(3): 331-45, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24154662

RESUMO

Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.


Assuntos
Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Alelos , Biologia Computacional , Éxons , Genes Recessivos , Testes Genéticos , Genótipo , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
8.
Nat Commun ; 11(1): 4779, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963246

RESUMO

Highly reproducible smoking-associated DNA methylation changes in whole blood have been reported by many Epigenome-Wide-Association Studies (EWAS). These epigenetic alterations could have important implications for understanding and predicting the risk of smoking-related diseases. To this end, it is important to establish if these DNA methylation changes happen in all blood cell subtypes or if they are cell-type specific. Here, we apply a cell-type deconvolution algorithm to identify cell-type specific DNA methylation signals in seven large EWAS. We find that most of the highly reproducible smoking-associated hypomethylation signatures are more prominent in the myeloid lineage. A meta-analysis further identifies a myeloid-specific smoking-associated hypermethylation signature enriched for DNase Hypersensitive Sites in acute myeloid leukemia. These results may guide the design of future smoking EWAS and have important implications for our understanding of how smoking affects immune-cell subtypes and how this may influence the risk of smoking related diseases.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigenoma , Fumar/efeitos adversos , Algoritmos , Povo Asiático , Sangue , Ilhas de CpG , Epigenômica/métodos , Etnicidade , Feminino , Humanos , Linfócitos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA