Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 128(6): 829-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24117434

RESUMO

Müller cells constitute the main glial cell type in the retina where it interacts with virtually all cells displaying relevant functions to retinal physiology. Under appropriate stimuli, Müller cells may undergo dedifferentiation, being able to generate other neural cell types. Here, we show that purified mouse Müller cells in culture express a group of proteins related to the dopaminergic phenotype, including the nuclear receptor-related 1 protein, required for dopaminergic differentiation, as well the enzyme tyrosine hydroxylase. These dopaminergic components are active, since Müller cells are able to synthesize and release dopamine to the extracellular medium. Moreover, Müller-derived tyrosine hydroxylase can be regulated, increasing its activity because of phosphorylation of serine residues in response to agents that increase intracellular cAMP levels. These observations were extended to glial cells obtained from adult monkey retinas with essentially the same results. To address the potential use of dopaminergic Müller cells as a source of dopamine in cell therapy procedures, we used a mouse model of Parkinson's disease, in which mouse Müller cells with the dopaminergic phenotype were transplanted into the striatum of hemi-parkinsonian mice generated by unilateral injection of 6-hydroxydopamine. These cells fully decreased the apomorphine-induced rotational behavior and restored motor functions in these animals, as measured by the rotarod and the forelimb-use asymmetry (cylinder) tests. The data indicate local restoration of dopaminergic signaling in hemi-parkinsonian mice confirmed by measurement of striatal dopamine after Müller cell grafting.


Assuntos
Neurônios Dopaminérgicos/transplante , Células Ependimogliais/transplante , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/terapia , Animais , Cebus , Diferenciação Celular/fisiologia , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Transtornos Parkinsonianos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Recuperação de Função Fisiológica/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Neurochem ; 124(5): 621-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23227973

RESUMO

Pituitary Adenylyl Cyclase-Activating Polypeptide (PACAP) is a neuroactive peptide present in the avian retina where it activates adenylyl cyclase (AC) since early in development via PACAP receptors. The synthesis of cAMP in response to PACAP is observed since embryonic day 8/9 (E8/9). After E12, signaling via PACAP receptors desensitizes, reaching very low levels in the mature tissue. We show here that chronic administration of PACAP in vitro desensitizes PACAP-induced cAMP accumulation, while the administration of the PACAP antagonist (PACAP 6-38) re-sensitizes PACAP receptor/cyclase system in vitro and in vivo. Moreover, a twofold increase in the number of tyrosine hydroxylase positive (TH⁺) cells is observed after in vivo injection of PACAP6-38. NURR1, a transcription factor associated with the differentiation of dopaminergic cells in the CNS, is present in the chick retina in all developmental stages studied. The presence of NURR1 positive cells in the mature tissue far exceeds the number of TH⁺ cells, suggesting that these NURR1-positive cells might have the potential to express the dopaminergic phenotype. Our data show that if PACAP signaling is increased in mature retinas, plastic changes in dopaminergic phenotype can be achieved.


Assuntos
Plasticidade Neuronal/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/metabolismo , Animais , Western Blotting , Galinhas , AMP Cíclico , Dopamina , Imuno-Histoquímica , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Adv Biosyst ; 4(12): e1900312, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32519463

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor and despite optimal treatment, long-term survival remains uncommon. GBM can be roughly divided into three different molecular subtypes, each varying in aggressiveness and treatment resistance. Recent evidence shows plasticity between these subtypes in which the proneural (PN) glioma stem-like cells (GSCs) undergo transition into the more aggressive mesenchymal (MES) subtype, leading to therapeutic resistance. Extracellular vesicles (EVs) are membranous structures secreted by nearly every cell and are shown to play a key role in GBM progression by acting as multifunctional signaling complexes. Here, it is shown that EVs derived from MES cells educate PN cells to increase stemness, invasiveness, cell proliferation, migration potential, aggressiveness, and therapeutic resistance by inducing mesenchymal transition through nuclear factor-κB/signal transducer and activator of transcription 3 signaling. The findings could potentially help explore new treatment strategies for GBM and indicate that EVs may also play a role in mesenchymal transition of different tumor types.


Assuntos
Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
4.
J Natl Cancer Inst ; 111(3): 283-291, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257000

RESUMO

BACKGROUND: The olfactory ensheathing cells (OECs) migrate from the peripheral nervous system to the central nervous system (CNS), a critical process for the development of the olfactory system and axonal extension after injury in neural regeneration. Because of their ability to migrate to the injury site and anti-inflammatory properties, OECs were tested against different neurological pathologies, but were never studied in the context of cancer. Here, we evaluated OEC tropism to gliomas and their potential as a "Trojan horse" to deliver therapeutic transgenes through the nasal pathway, their natural route to CNS. METHODS: OECs were purified from the mouse olfactory bulb and engineered to express a fusion protein between cytosine deaminase and uracil phosphoribosyltransferase (CU), which convert the prodrug 5-fluorocytosine (5-FC) into cytotoxic metabolite 5-fluorouracil, leading to a bystander killing of tumor cells. These cells were injected into the nasal cavity of mice bearing glioblastoma tumors and OEC-mediated gene therapy was monitored by bioluminescence imaging and confirmed with survival and ex vivo histological analysis. All statistical tests were two-sided. RESULTS: OECs migrated from the nasal pathway to the primary glioma site, tracked infiltrative glioma stemlike cells, and delivered therapeutic transgene, leading to a slower tumor growth and increased mice survival. At day 28, bioluminescence imaging revealed that mice treated with a single injection of OEC-expressing CU and 5-FC had tumor-associated photons (mean [SD]) of 1.08E + 08 [9.7E + 07] vs 4.1E + 08 [2.3E + 08] for control group (P < .001), with a median survival of 41 days vs 34 days, respectively (ratio = 0.8293, 95% confidence interval = 0.4323 to 1.226, P < .001) (n = 9 mice per group). CONCLUSIONS: We show for the first time that autologous transplantation of OECs can target and deliver therapeutic transgenes to brain tumors upon intranasal delivery, the natural route of OECs to the CNS, which could be extended to other types of cancer.


Assuntos
Citosina Desaminase/administração & dosagem , Fluoruracila/metabolismo , Terapia Genética , Glioma/terapia , Bulbo Olfatório/transplante , Pentosiltransferases/administração & dosagem , Transgenes , Administração Intranasal , Animais , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Feminino , Flucitosina/metabolismo , Glioma/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA