Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
PLoS Biol ; 21(11): e3002370, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943954

RESUMO

During influenza A virus infection, the viral RNA polymerase transcribes the viral negative-sense segmented RNA genome and replicates it in a two-step process via complementary RNA within viral ribonucleoprotein (vRNP) complexes. While numerous viral and host factors involved in vRNP functions have been identified, dissecting the roles of individual factors remains challenging due to the complex cellular environment in which vRNP activity has been studied. To overcome this challenge, we reconstituted viral transcription and a full cycle of replication in a test tube using vRNPs isolated from virions and recombinant factors essential for these processes. This novel system uncovers the minimal components required for influenza virus replication and also reveals new roles of regulatory factors in viral replication. Moreover, it sheds light on the molecular interplay underlying the temporal regulation of viral transcription and replication. Our highly robust in vitro system enables systematic functional analysis of factors modulating influenza virus vRNP activity and paves the way for imaging key steps of viral transcription and replication.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleoproteínas/genética , Replicação Viral/fisiologia , RNA Viral/genética
2.
Nature ; 587(7835): 638-643, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208942

RESUMO

Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.


Assuntos
Microscopia Crioeletrônica , Gammainfluenzavirus/enzimologia , Interações Hospedeiro-Patógeno , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Animais , Galinhas/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Modelos Moleculares , Proteínas Nucleares/ultraestrutura , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , RNA Viral/biossíntese , RNA Viral/genética , Proteínas de Ligação a RNA/ultraestrutura , RNA Polimerase Dependente de RNA/ultraestrutura , Células Sf9
3.
Mol Cell ; 70(6): 1101-1110.e4, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910112

RESUMO

Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Gammainfluenzavirus/genética , Gammainfluenzavirus/ultraestrutura , RNA Polimerases Dirigidas por DNA/fisiologia , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Capuzes de RNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral
4.
J Virol ; 98(5): e0013824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563748

RESUMO

Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.


Assuntos
Microscopia Crioeletrônica , Vírus da Influenza A , RNA Polimerase II , RNA Polimerase Dependente de RNA , Proteínas Virais , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/enzimologia , Influenza Humana/virologia , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Viral/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/química , Transcrição Gênica , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
5.
Cell ; 140(3): 397-408, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20144762

RESUMO

RIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and interferon induction in virus-infected cells is not known. Here, we use three approaches to identify physiological RIG-I agonists in cells infected with influenza A virus or Sendai virus. We show that RIG-I agonists are exclusively generated by the process of virus replication and correspond to full-length virus genomes. Therefore, nongenomic viral transcripts, short replication intermediates, and cleaved self-RNA do not contribute substantially to interferon induction in cells infected with these negative strand RNA viruses. Rather, single-stranded RNA viral genomes bearing 5'-triphosphates constitute the natural RIG-I agonists that trigger cell-intrinsic innate immune responses during infection.


Assuntos
RNA Helicases DEAD-box/imunologia , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Infecções por Vírus de RNA/imunologia , RNA Viral/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , Cães , Humanos , Interferons/imunologia , Camundongos , Vírus de RNA/fisiologia , Receptores de Superfície Celular , Receptores Imunológicos , Replicação Viral
6.
Nature ; 573(7773): 287-290, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485076

RESUMO

Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans1,2. Influenza A viruses contain a segmented negative-sense RNA genome, which is transcribed and replicated by the viral-RNA-dependent RNA polymerase (FluPolA) composed of PB1, PB2 and PA subunits3-5. Although the high-resolution crystal structure of FluPolA of bat influenza A virus has previously been reported6, there are no complete structures available for human and avian FluPolA. Furthermore, the molecular mechanisms of genomic viral RNA (vRNA) replication-which proceeds through a complementary RNA (cRNA) replicative intermediate, and requires oligomerization of the polymerase7-10-remain largely unknown. Here, using crystallography and cryo-electron microscopy, we determine the structures of FluPolA from human influenza A/NT/60/1968 (H3N2) and avian influenza A/duck/Fujian/01/2002 (H5N1) viruses at a resolution of 3.0-4.3 Å, in the presence or absence of a cRNA or vRNA template. In solution, FluPolA forms dimers of heterotrimers through the C-terminal domain of the PA subunit, the thumb subdomain of PB1 and the N1 subdomain of PB2. The cryo-electron microscopy structure of monomeric FluPolA bound to the cRNA template reveals a binding site for the 3' cRNA at the dimer interface. We use a combination of cell-based and in vitro assays to show that the interface of the FluPolA dimer is required for vRNA synthesis during replication of the viral genome. We also show that a nanobody (a single-domain antibody) that interferes with FluPolA dimerization inhibits the synthesis of vRNA and, consequently, inhibits virus replication in infected cells. Our study provides high-resolution structures of medically relevant FluPolA, as well as insights into the replication mechanisms of the viral RNA genome. In addition, our work identifies sites in FluPolA that could be targeted in the development of antiviral drugs.


Assuntos
Genoma Viral/genética , Vírus da Influenza A Subtipo H3N2/enzimologia , Virus da Influenza A Subtipo H5N1/enzimologia , Modelos Moleculares , RNA Polimerase Dependente de RNA/química , Microscopia Crioeletrônica , Cristalização , Estrutura Terciária de Proteína , Anticorpos de Domínio Único/metabolismo , Replicação Viral
7.
Nucleic Acids Res ; 50(10): 5713-5725, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639917

RESUMO

The segmented negative-sense RNA genome of influenza A virus is assembled into ribonucleoprotein complexes (RNP) with viral RNA-dependent RNA polymerase and nucleoprotein (NP). It is in the context of these RNPs that the polymerase transcribes and replicates viral RNA (vRNA). Host acidic nuclear phosphoprotein 32 (ANP32) family proteins play an essential role in vRNA replication by mediating the dimerization of the viral polymerase via their N-terminal leucine-rich repeat (LRR) domain. However, whether the C-terminal low-complexity acidic region (LCAR) plays a role in RNA synthesis remains unknown. Here, we report that the LCAR is required for viral genome replication during infection. Specifically, we show that the LCAR directly interacts with NP and this interaction is mutually exclusive with RNA. Furthermore, we show that the replication of a short vRNA-like template that can be replicated in the absence of NP is less sensitive to LCAR truncations compared with the replication of full-length vRNA segments which is NP-dependent. We propose a model in which the LCAR interacts with NP to promote NP recruitment to nascent RNA during influenza virus replication, ensuring the co-replicative assembly of RNA into RNPs.


Assuntos
Proteínas Nucleares , RNA Viral , Genoma Viral , Proteínas Nucleares/metabolismo , Proteínas do Nucleocapsídeo/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfoproteínas/genética , RNA Viral/genética , RNA Viral/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Replicação Viral/genética
8.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35037045

RESUMO

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exorribonucleases/metabolismo , Genoma Viral/genética , Instabilidade Genômica , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Exorribonucleases/antagonistas & inibidores , Genoma Viral/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Inibidores de Integrase de HIV/farmacologia , Isoindóis/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Compostos Organosselênicos/farmacologia , RNA Viral/biossíntese , RNA Viral/genética , Raltegravir Potássico/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
J Virol ; 96(5): e0197921, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019720

RESUMO

Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilized a combination of biochemical, proteomic, and biophysical approaches to characterize the interaction between the viral polymerase and Rab11a. Using pulldown assays, we showed that vRNPs but not complementary RNPs (cRNPs) from infected cell lysates bind to Rab11a. We also showed that the viral polymerase directly interacts with Rab11a and that the C-terminal two-thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627, and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, which has been shown to be important for binding Rab11 family-interacting proteins (Rab11-FIPs), is also important for PB2-C binding, suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. IMPORTANCE The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane, where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study, we showed that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We mapped this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.


Assuntos
GTP Fosfo-Hidrolases , Vírus da Influenza A , RNA Viral , RNA Polimerase Dependente de RNA , Proteínas Virais , Replicação Viral , GTP Fosfo-Hidrolases/metabolismo , Vírus da Influenza A/enzimologia , Vírus da Influenza A/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Proteômica , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Espalhamento a Baixo Ângulo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
10.
Nucleic Acids Res ; 49(22): 13019-13030, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850141

RESUMO

SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , RNA Viral/biossíntese , SARS-CoV-2/enzimologia , Trifosfato de Adenosina/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Genoma Viral/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Nucleotidiltransferases/metabolismo , Capuzes de RNA/genética , SARS-CoV-2/genética , Vaccinia virus/enzimologia , Vaccinia virus/metabolismo , Tratamento Farmacológico da COVID-19
11.
J Virol ; 95(18): e0087821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34190596

RESUMO

The influenza A virus genome is comprised of eight single-stranded negative-sense viral RNA (vRNA) segments. Each of the eight vRNA segments contains segment-specific nonconserved noncoding regions (NCRs) of similar sequence and length in different influenza A virus strains. However, in the subtype-determinant segments, encoding hemagglutinin (HA) and neuraminidase (NA), the segment-specific noncoding regions are subtype specific, varying significantly in sequence and length at both the 3' and 5' termini among different subtypes. The significance of these subtype-specific noncoding regions (ssNCR) in the influenza virus replication cycle is not fully understood. In this study, we show that truncations of the 3'-end H1-subtype-specific noncoding region (H1-ssNCR) resulted in recombinant viruses with decreased HA vRNA replication and attenuated growth phenotype, although the vRNA replication was not affected in single-template RNP reconstitution assays. The attenuated viruses were unstable, and point mutations at nucleotide position 76 or 56 in the adjacent coding region of HA vRNA were found after serial passage. The mutations restored the HA vRNA replication and reversed the attenuated virus growth phenotype. We propose that the terminal noncoding and adjacent coding regions act synergistically to ensure optimal levels of HA vRNA replication in a multisegment environment. These results provide novel insights into the role of the 3'-end nonconserved noncoding regions and adjacent coding regions on template preference in multiple-segmented negative-strand RNA viruses. IMPORTANCE While most influenza A virus vRNA segments contain segment-specific nonconserved noncoding regions of similar length and sequence, these regions vary considerably both in length and sequence in the segments encoding HA and NA, the two major antigenic determinants of influenza A viruses. In this study, we investigated the function of the 3'-end H1-ssNCR and observed a synergistic effect between the 3'-end H1-ssNCR nucleotides and adjacent coding nucleotide(s) of the HA segment on template preference in a multisegment environment. The results unravel an additional level of complexity in the regulation of RNA replication in multiple-segmented negative-strand RNA viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Influenza Humana/virologia , Fases de Leitura Aberta/genética , RNA Viral/metabolismo , Regiões não Traduzidas/genética , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Sequência de Bases , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana/genética , Influenza Humana/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Montagem de Vírus
12.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295915

RESUMO

Influenza viruses encode a viral RNA-dependent RNA polymerase (FluPol), which is responsible for transcribing and replicating the negative-sense viral RNA (vRNA) genome. FluPol transcribes vRNA using a host-capped mRNA primer and replicates it by synthesizing a positive-sense cRNA intermediate, which is copied back into vRNA. To carry out these functions, FluPol interacts with vRNA and cRNA using conserved promoter elements at the 5' and 3' termini. Recent structural studies have identified a new surface binding site for the 3' vRNA and cRNA promoters on FluPol, referred to as the mode B site. However, the role of this binding site in FluPol function is unknown. In this study, we used a combination of cell-based and biochemical assays to show that the mode B site is important for both viral genome transcription and replication in influenza A virus. Furthermore, we show that the mode B site is not needed for initiating transcription in vitro but is required to synthesize a full-length product. This is consistent with a model in which the 3' terminus of the vRNA template binds in the mode B site during elongation. Our data provide the first functional insights into the role of the mode B site on FluPol, which advances our understanding of FluPol function and influenza virus replication.IMPORTANCE Influenza viruses are responsible for up to 650,000 deaths per year through seasonal epidemics, and pandemics have caused tens of millions of deaths in the past. Most current therapeutics suffer from widespread resistance, creating a need for new drug targets against influenza virus. The virus encodes an RNA-dependent RNA polymerase, which replicates and transcribes the vRNA genome. The polymerase interacts with vRNA and the complementary replicative intermediate cRNA using several specific binding sites; however, the functions associated with these binding sites remain unknown. Here, we functionally characterize a binding site for the 3' vRNA and cRNA promoters. Our data offer insight into the mechanism of viral genome transcription by the influenza virus polymerase and may be applicable to other related viruses.


Assuntos
Vírus da Influenza A/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase Dependente de RNA/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação/genética , Genoma Viral/genética , Células HEK293 , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Mutação/genética , Orthomyxoviridae/genética , Proteínas com Motivo de Reconhecimento de RNA , RNA Complementar/genética , RNA Complementar/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica/genética , Replicação Viral/genética
13.
Nature ; 527(7576): 114-7, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26503046

RESUMO

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.


Assuntos
Gammainfluenzavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Endonucleases/química , Endonucleases/metabolismo , Ativação Enzimática , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/biossíntese , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/química
15.
Nucleic Acids Res ; 47(12): 6466-6477, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31032520

RESUMO

The viral RNA (vRNA) genome of influenza viruses is replicated by the RNA-dependent RNA polymerase (RNAP) via a complementary RNA (cRNA) intermediate. The vRNA promoter can adopt multiple conformations when bound by the RNAP. However, the dynamics, determinants, and biological role of these conformations are unknown; further, little is known about cRNA promoter conformations. To probe the RNA conformations adopted during initial replication, we monitored single, surface-immobilized vRNA and cRNA initiation complexes in real-time. Our results show that, while the 3' terminus of the vRNA promoter exists in dynamic equilibrium between pre-initiation and initiation conformations, the cRNA promoter exhibited very limited dynamics. Two residues in the proximal 3' region of the cRNA promoter (residues absent in the vRNA promoter) allowed the cRNA template strand to reach further into the active site, limiting promoter dynamics. Our results highlight promoter-dependent differences in influenza initiation mechanisms, and advance our understanding of virus replication.


Assuntos
Orthomyxoviridae/genética , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Orthomyxoviridae/fisiologia
16.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875249

RESUMO

The heterotrimeric influenza A virus RNA-dependent RNA polymerase complex, composed of PB1, PB2, and PA subunits, is responsible for transcribing and replicating the viral RNA genome. The N-terminal endonuclease domain of the PA subunit performs endonucleolytic cleavage of capped host RNAs to generate capped RNA primers for viral transcription. A surface-exposed flexible loop (PA51-72-loop) in the PA endonuclease domain has been shown to be dispensable for endonuclease activity. Interestingly, the PA51-72-loop was found to form different intramolecular interactions depending on the conformational arrangement of the polymerase. In this study, we show that a PA subunit lacking the PA51-72-loop assembles into a heterotrimeric polymerase with PB1 and PB2. We demonstrate that in a cellular context, the PA51-72-loop is required for RNA replication but not transcription by the viral polymerase. In agreement, recombinant viral polymerase lacking the PA51-72-loop is able to carry out cap-dependent transcription but is inhibited in de novo replication initiation in vitro Furthermore, viral RNA (vRNA) synthesis is also restricted during ApG-primed extension, indicating that the PA51-72-loop is required not only for replication initiation but also for elongation on a cRNA template. We propose that the PA51-72-loop plays a role in the stabilization of the replicase conformation of the polymerase. Together, these results further our understanding of influenza virus RNA genome replication in general and highlight a role of the PA endonuclease domain in polymerase function in particular.IMPORTANCE Influenza A viruses are a major global health threat, not only causing significant morbidity and mortality every year but also having the potential to cause severe pandemic outbreaks like the 1918 influenza pandemic. The viral polymerase is a protein complex which is responsible for transcription and replication of the viral genome and therefore is an attractive target for antiviral drug development. For that purpose it is important to understand the mechanisms of how the virus replicates its genome and how the viral polymerase works on a molecular level. In this report, we characterize the role of the flexible surface-exposed PA51-72-loop in polymerase function and offer new insights into the replication mechanism of influenza A viruses.


Assuntos
Vírus da Influenza A/enzimologia , Vírus da Influenza A/fisiologia , Proteínas Mutantes/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Proteínas Mutantes/genética , Ligação Proteica , Multimerização Proteica , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , Deleção de Sequência , Proteínas Virais/genética
17.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122973

RESUMO

The RNA genome of influenza A viruses is transcribed and replicated by the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and PB2. High-resolution structural data revealed that the polymerase assembles into a central polymerase core and several auxiliary highly flexible, protruding domains. The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host range restriction of influenza A viruses, is still poorly understood. In this study, we used structure-guided truncations of the PB2 subunit to show that a PB2 subunit lacking the 627 domain accumulates in the cell nucleus and assembles into a heterotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombinant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching, cap-dependent transcription initiation, and cap-independent ApG dinucleotide extension in vitro, indicating that the PB2 627 domain of the influenza virus RNA polymerase is not involved in core catalytic functions of the polymerase. However, in a cellular context, the 627 domain is essential for both transcription and replication. In particular, we showed that the PB2 627 domain is essential for the accumulation of the cRNA replicative intermediate in infected cells. Together, these results further our understanding of the role of the PB2 627 domain in transcription and replication of the influenza virus RNA genome.IMPORTANCE Influenza A viruses are a major global health threat, not only causing disease in both humans and birds but also placing significant strains on economies worldwide. Avian influenza A virus polymerases typically do not function efficiently in mammalian hosts and require adaptive mutations to restore polymerase activity. These adaptations include mutations in the 627 domain of the PB2 subunit of the viral polymerase, but it still remains to be established how these mutations enable host adaptation on a molecular level. In this report, we characterize the role of the 627 domain in polymerase function and offer insights into the replication mechanism of influenza A viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/virologia , Embrião de Galinha , Células HEK293 , Humanos , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , RNA Complementar/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Replicação Viral
18.
PLoS Pathog ; 12(12): e1006121, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027316

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1003971.].

19.
Nucleic Acids Res ; 44(21): 10304-10315, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694620

RESUMO

Influenza viruses have a segmented viral RNA (vRNA) genome, which is replicated by the viral RNA-dependent RNA polymerase (RNAP). Replication initiates on the vRNA 3' terminus, producing a complementary RNA (cRNA) intermediate, which serves as a template for the synthesis of new vRNA. RNAP structures show the 3' terminus of the vRNA template in a pre-initiation state, bound on the surface of the RNAP rather than in the active site; no information is available on 3' cRNA binding. Here, we have used single-molecule Förster resonance energy transfer (smFRET) to probe the viral RNA conformations that occur during RNAP binding and initial replication. We show that even in the absence of nucleotides, the RNAP-bound 3' termini of both vRNA and cRNA exist in two conformations, corresponding to the pre-initiation state and an initiation conformation in which the 3' terminus of the viral RNA is in the RNAP active site. Nucleotide addition stabilises the 3' vRNA in the active site and results in unwinding of the duplexed region of the promoter. Our data provide insights into the dynamic motions of RNA that occur during initial influenza replication and has implications for our understanding of the replication mechanisms of similar pathogenic viruses.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Vírus da Influenza A/genética , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/química , RNA Viral/genética , Transcrição Gênica , Microscopia Confocal , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , Iniciação da Transcrição Genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA