Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 77: 34-46, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665712

RESUMO

The bcl-2 family of survival and death promoting proteins play a key role in regulating cell numbers during nervous system development. Bcl-xL, an anti-apoptotic bcl-2 family member is highly expressed in the developing nervous system. However; the early embryonic lethality of the bcl-x germline null mouse precluded an investigation into its role in nervous system development. To identify the role of bcl-x in spinal cord neurogenesis, we generated a central nervous system-specific bcl-x conditional knockout (BKO) mouse. Apoptotic cell death in the BKO embryo was initially detected at embryonic day 11 (E11) in the ventrolateral aspect of the spinal cord corresponding to the location of motor neurons. Apoptosis reached its peak at E13 having spread across the ventral and into the dorsal spinal cord. By E18, the wave of apoptosis had passed and only a few apoptotic cells were observed. The duration and direction of spread of apoptosis across the spinal cord is consistent with the spatial and temporal sequence of neuronal differentiation. Motor neurons, the first neurons to become post mitotic in the spinal cord, were also the first apoptotic cells. As neurogenesis spread across the spinal cord, later born neuronal populations such as Lim2+ interneurons were also affected. The onset of apoptosis occurred in cells that had exited the cell cycle within the previous 24h and initiated neural differentiation as demonstrated by BrdU birthdating and ßIII tubulin immunohistochemistry. This data demonstrates that spinal cord neurons become Bcl-xL dependent at an early post mitotic stage in developmental neurogenesis.


Assuntos
Neurogênese , Medula Espinal/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose , Ciclo Celular , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Proteína bcl-X/genética
3.
Cell Death Differ ; 26(8): 1501-1515, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30361616

RESUMO

During neurogenesis, proliferating neural precursor cells (NPC) exit the cell cycle and differentiate into postmitotic neurons. The proteins that regulate cell survival through the stages of differentiation, however, are still poorly understood. Here, we examined the roles of the anti-apoptotic Bcl-2 proteins, Mcl-1 and Bcl-xL, in promoting survival as cells progress through the stages of neurogenesis in the mouse embryonic central nervous system. We used Nestin-mediated, nervous system-specific conditional deletion of mcl-1, bcl-x or both to identify their distinct and overlapping roles. Individual conditional deletion of mcl-1 (MKO) and bcl-x (BKO) suggested sequential roles in promoting cell survival during developmental neurogenesis. In the MKO embryo, apoptosis begins at embryonic day 10 (E10) in the proliferating NPC population throughout the entire developing nervous system. In the BKO embryo, apoptosis begins later at E11 within the postmitotic neuron populations. In the double (mcl-1 and bcl-x) conditional knockout (DKO), cell death extended throughout both proliferating and non-proliferating cell populations resulting in embryonic lethality at E12, earlier than in either the MKO or BKO. Apoptotic cell death of the entire central nervous system in the DKO demonstrates that both genes are necessary for cell survival during developmental neurogenesis. To determine whether Mcl-1 and Bcl-xL have overlapping anti-apoptotic roles during neurogenesis, we examined the impact of gene dosage. Loss of a single bcl-x allele in the MKO embryo exasperated apoptotic cell death within the NPC population revealing a novel anti-apoptotic role for Bcl-xL in proliferating NPCs. Cells were rescued from apoptosis in both the MKO and BKO embryos by breeding with the Bax null mouse line indicating that Mcl-1 and Bcl-xL have a common pro-apoptotic target during developmental neurogenesis. Taken together, these findings demonstrate that Mcl-1 and Bcl-xL are the two essential anti-apoptotic Bcl-2 proteins required for the survival of the developing mammalian nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA