Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468197

RESUMO

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Assuntos
Camellia sinensis , Camellia , Humanos , Código de Barras de DNA Taxonômico/métodos , Camellia sinensis/genética , Chá/genética , DNA , Filogenia
2.
New Phytol ; 241(4): 1851-1865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38229185

RESUMO

The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.


Assuntos
Evolução Biológica , Rhamnaceae , Ecossistema , Filogenia , Biodiversidade , Especiação Genética
3.
Syst Biol ; 72(4): 856-873, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073863

RESUMO

Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.].


Assuntos
Hibridização Genética , Filogenia , Filogeografia , Teorema de Bayes
4.
Am J Bot ; 111(3): e16299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419145

RESUMO

PREMISE: Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness. METHODS: Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity of Astragalus is attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whether Astragalus originated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. RESULTS: Our results point to the importance of heterogeneity in the diversification of Astragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. CONCLUSIONS: Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging "mega-radiations." Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species-rich clades.


Assuntos
Astrágalo , Ecossistema , Filogenia , Filogeografia , Evolução Biológica
5.
Mol Phylogenet Evol ; 188: 107912, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648181

RESUMO

Gene tree discordance is a significant legacy of biological evolution. Multiple factors can result in incongruence among genes, such as introgression, incomplete lineage sorting (ILS), gene duplication or loss. Resolving the background of gene tree discordance is a critical way to uncover the process of species diversification. Camellia, the largest genus in Theaceae, has controversial taxonomy and systematics due in part to a complex evolutionary history. We used 60 transcriptomes of 55 species, which represented 15 sections of Camellia to investigate its phylogeny and the possible causes of gene tree discordance. We conducted gene tree discordance analysis based on 1,617 orthologous low-copy nuclear genes, primarily using coalescent species trees and polytomy tests to distinguish hard and soft conflict. A selective pressure analysis was also performed to assess the impact of selection on phylogenetic topology reconstruction. Our results detected different levels of gene tree discordance in the backbone of Camellia, and recovered rapid diversification as one of the possible causes of gene tree discordance. Furthermore, we confirmed that none of the currently proposed sections of Camellia was monophyletic. Comparisons among datasets partitioned under different selective pressure regimes showed that integrating all orthologous genes provided the best phylogenetic resolution of the species tree of Camellia. The findings of this study reveal rapid diversification as a major source of gene tree discordance in Camellia and will facilitate future investigation of reticulate relationships at the species level in this important plant genus.


Assuntos
Camellia , Theaceae , Camellia/genética , Filogenia , Evolução Biológica , Duplicação Gênica
6.
Am J Bot ; 110(11): e16254, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37938809

RESUMO

PREMISE: Glacial/interglacial cycles and topographic complexity are both considered to have shaped today's diverse phylogeographic patterns of taxa from unglaciated eastern North America (ENA). However, few studies have focused on the phylogeography and population dynamics of wide-ranging ENA herbaceous species occurring in forest understory habitat. We examined the phylogeographic pattern and evolutionary history of Podophyllum peltatum L., a widely distributed herb inhabiting deciduous forests of ENA. METHODS: Using chloroplast DNA (cpDNA) sequences and nuclear microsatellite loci, we investigated the population structure and genetic diversity of the species. Molecular dating, demographic history analyses, and ecological niche modeling were also performed to illustrate the phylogeographic patterns. RESULTS: Our cpDNA results identified three main groups that are largely congruent with boundaries along the Appalachian Mountains and the Mississippi River, two major geographic barriers in ENA. Populations located to the east of the Appalachians and along the central Appalachians exhibited relatively higher levels of genetic diversity. Extant lineages may have diverged during the late Miocene, and range expansions of different groups may have happened during the Pleistocene glacial/interglacial cycles. CONCLUSIONS: Our findings indicate that geographic barriers may have started to facilitate the population divergence in P. peltatum before the Pleistocene. Persistence in multiple refugia, including areas around the central Appalachians during the Quaternary glacial period, and subsequent expansions under hospitable climatic condition, especially westward expansion, are likely responsible for the species' contemporary genetic structure and phylogeographic pattern.


Assuntos
Podophyllum peltatum , Filogeografia , Podophyllum peltatum/genética , DNA de Cloroplastos/genética , DNA de Cloroplastos/química , Demografia , Região dos Apalaches , Plantas/genética , Variação Genética , Filogenia
7.
New Phytol ; 234(2): 634-649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092309

RESUMO

Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Regulação da Expressão Gênica de Plantas , Genômica , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
8.
Ann Bot ; 129(4): 457-471, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35037017

RESUMO

BACKGROUND AND AIMS: Theaceae, with three tribes, nine genera and more than 200 species, are of great economic and ecological importance. Recent phylogenetic analyses based on plastomic data resolved the relationships among the three tribes and the intergeneric relationships within two of those tribes. However, generic-level relationships within the largest tribe, Theeae, were not fully resolved. The role of putative whole-genome duplication (WGD) events in the family and possible hybridization events among genera within Theeae also remain to be tested further. METHODS: Transcriptomes or low-depth whole-genome sequencing of 57 species of Theaceae, as well as additional plastome sequence data, were generated. Using a dataset of low-copy nuclear genes, we reconstructed phylogenetic relationships using concatenated, species tree and phylogenetic network approaches. We further conducted molecular dating analyses and inferred possible WGD events by examining the distribution of the number of synonymous substitutions per synonymous site (Ks) for paralogues in each species. For plastid protein-coding sequences , phylogenies were reconstructed for comparison with the results obtained from analysis of the nuclear dataset. RESULTS: Based on the 610 low-copy nuclear genes (858 606 bp in length) investigated, Stewartieae was resolved as sister to the other two tribes. Within Theeae, the Apterosperma-Laplacea clade grouped with Pyrenaria, leaving Camellia and Polyspora as sister. The estimated ages within Theaceae were largely consistent with previous studies based mainly on plastome data. Two reticulation events within Camellia and one between the common ancestor of Gordonia and Schima were found. All members of the tea family shared two WGD events, an older At-γ and a recent Ad-ß; both events were also shared with the outgroups (Diapensiaceae, Pentaphylacaceae, Styracaceae and Symplocaceae). CONCLUSIONS: Our analyses using low-copy nuclear genes improved understanding of phylogenetic relationships at the tribal and generic levels previously proposed based on plastome data, but the phylogenetic position of the Apterosperma-Laplacea clade needs more attention. There is no evidence for extensive intergeneric hybridization within Theeae or for a Theaceae-specific WGD event. Land bridges (e.g. the Bering land bridge) during the Late Oligocene may have permitted the intercontinental plant movements that facilitated the putative ancient introgression between the common ancestor of Gordonia and Schima.


Assuntos
Ericales , Theaceae , Duplicação Gênica , Hibridização Genética , Filogenia , Plastídeos/genética , Theaceae/genética
9.
Proc Natl Acad Sci U S A ; 116(22): 10874-10882, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085636

RESUMO

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade-Saxifragales-with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.


Assuntos
Biodiversidade , Evolução Biológica , Ecossistema , Fenótipo , Filogenia , Saxifragales/classificação , Saxifragales/genética , Saxifragales/fisiologia
10.
Am J Bot ; 108(6): 912-924, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181762

RESUMO

Traditionally, the generation and use of biodiversity data and their associated specimen objects have been primarily the purview of individuals and small research groups. While deposition of data and specimens in herbaria and other repositories has long been the norm, throughout most of their history, these resources have been accessible only to a small community of specialists. Through recent concerted efforts, primarily at the level of national and international governmental agencies over the last two decades, the pace of biodiversity data accumulation has accelerated, and a wider array of biodiversity scientists has gained access to this massive accumulation of resources, applying them to an ever-widening compass of research pursuits. We review how these new resources and increasing access to them are affecting the landscape of biodiversity research in plants today, focusing on new applications across evolution, ecology, and other fields that have been enabled specifically by the availability of these data and the global scope that was previously beyond the reach of individual investigators. We give an overview of recent advances organized along three lines: broad-scale analyses of distributional data and spatial information, phylogenetic research circumscribing large clades with comprehensive taxon sampling, and data sets derived from improved accessibility of biodiversity literature. We also review synergies between large data resources and more traditional data collection paradigms, describe shortfalls and how to overcome them, and reflect on the future of plant biodiversity analyses in light of increasing linkages between data types and scientists in our field.


Assuntos
Biodiversidade , Ecologia , Filogenia , Plantas
11.
BMC Plant Biol ; 20(1): 324, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640989

RESUMO

BACKGROUND: Plastid gene loss and pseudogenization has been widely documented in parasitic and mycoheterotrophic plants, which have relaxed selective constraints on photosynthetic function. More enigmatic are sporadic reports of pseudogenization and loss of important photosynthesis genes in lineages thought to be fully photosynthetic. Here we report the complete plastid genome of Saniculiphyllum guangxiense, a critically endangered and phylogenetically isolated plant lineage, along with genomic evidence of reduced chloroplast function. We also report 22 additional plastid genomes representing the diversity of its containing clade Saxifragales, characterizing gene content and placing variation in a broader phylogenetic context. RESULTS: We find that the plastid genome of Saniculiphyllum has experienced pseudogenization of five genes of the ndh complex (ndhA, ndhB, ndhD, ndhF, and ndhK), previously reported in flowering plants with an aquatic habit, as well as the surprising pseudogenization of two genes more central to photosynthesis (ccsA and cemA), contrasting with strong phylogenetic conservatism of plastid gene content in all other sampled Saxifragales. These genes participate in photooxidative protection, cytochrome synthesis, and carbon uptake. Nuclear paralogs exist for all seven plastid pseudogenes, yet these are also unlikely to be functional. CONCLUSIONS: Saniculiphyllum appears to represent the greatest degree of plastid gene loss observed to date in any fully photosynthetic lineage, perhaps related to its extreme habitat specialization, yet plastid genome length, structure, and substitution rate are within the variation previously reported for photosynthetic plants. These results highlight the increasingly appreciated dynamism of plastid genomes, otherwise highly conserved across a billion years of green plant evolution, in plants with highly specialized life history traits.


Assuntos
Genomas de Plastídeos/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Saxifragaceae/genética , Cloroplastos/genética , Espécies em Perigo de Extinção , Organelas/genética , Filogenia , Plastídeos/genética , Pseudogenes/genética
12.
Plant Cell Environ ; 43(12): 2871-2893, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926444

RESUMO

A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold- and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry-cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins.


Assuntos
Biodiversidade , Magnoliopsida/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Evolução Biológica , Meio Ambiente , Magnoliopsida/genética , Filogenia , Estresse Fisiológico/fisiologia
13.
Am J Bot ; 107(6): 895-909, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32519354

RESUMO

PREMISE: Recent advances in generating large-scale phylogenies enable broad-scale estimation of species diversification. These now common approaches typically are characterized by (1) incomplete species coverage without explicit sampling methodologies and/or (2) sparse backbone representation, and usually rely on presumed phylogenetic placements to account for species without molecular data. We used empirical examples to examine the effects of incomplete sampling on diversification estimation and provide constructive suggestions to ecologists and evolutionary biologists based on those results. METHODS: We used a supermatrix for rosids and one well-sampled subclade (Cucurbitaceae) as empirical case studies. We compared results using these large phylogenies with those based on a previously inferred, smaller supermatrix and on a synthetic tree resource with complete taxonomic coverage. Finally, we simulated random and representative taxon sampling and explored the impact of sampling on three commonly used methods, both parametric (RPANDA and BAMM) and semiparametric (DR). RESULTS: We found that the impact of sampling on diversification estimates was idiosyncratic and often strong. Compared to full empirical sampling, representative and random sampling schemes either depressed or inflated speciation rates, depending on methods and sampling schemes. No method was entirely robust to poor sampling, but BAMM was least sensitive to moderate levels of missing taxa. CONCLUSIONS: We suggest caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled trees and in the use of summary backbone trees and other data sets with high representative bias, and we stress the importance of explicit sampling methodologies in macroevolutionary studies.


Assuntos
Evolução Biológica , Filogenia
14.
Mol Phylogenet Evol ; 140: 106576, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31381968

RESUMO

Since the late Pleistocene humans have caused the extinction of species across our planet. Placing these extinct species in the tree of life with genetic data is essential to understanding the ecological and evolutionary implications of these losses. While ancient DNA (aDNA) techniques have advanced rapidly in recent decades, aDNA from tropical species, especially birds, has been historically difficult to obtain, leaving a gap in our knowledge of the extinction processes that have influenced current distributions and biodiversity. Here we report the recovery of a nearly complete mitochondrial genome from a 2,500 year old (late Holocene) bone of an extinct species of bird, Caracara creightoni, recovered from the anoxic saltwater environment of a blue hole in the Bahamas. Our results suggest that this extinct species is sister (1.6% sequence divergence) to a clade containing the extant C. cheriway and C. plancus. Caracara creightoni shared a common ancestor with these extant species during the Pleistocene (1.2-0.4 MYA) and presumably survived on Cuba when the Bahamas was mostly underwater during Quaternary interglacial intervals (periods of high sea levels). Tropical blue holes have been collecting animals for thousands of years and will continue to improve our understanding of faunal extinctions and distributions. In particular, new aDNA techniques combined with radiocarbon dating from Holocene Bahamian fossils will allow us to place other extinct (species-level loss) and extirpated (population-level loss) vertebrate taxa in improved phylogenetic, evolutionary, biogeographic, and temporal contexts.


Assuntos
DNA Antigo/análise , Extinção Biológica , Falconiformes/classificação , Falconiformes/genética , Fósseis , Filogenia , Animais , Sequência de Bases , Aves/genética , Região do Caribe , Genoma Mitocondrial , Geografia
15.
Am J Bot ; 106(6): 850-863, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31106852

RESUMO

PREMISE: Geophytes-plants that typically possess a bulb, corm, tuber, and/or rhizome-have long captured the attention of hobbyists and researchers. However, despite the economic and evolutionary importance of these traits, the potential drivers of their morphological diversity remain unknown. Using a comprehensive phylogeny of monocots, we test for correlations between climate and geophyte growth form to better understand why we observe such a diversity of underground traits in geophytes. Understanding the evolutionary factors promoting independent origins of these potentially adaptive organs will lend insights into how plants adapt to environmental hardships. METHODS: Using a comprehensive phylogeny incorporated with global occurrence and climate data for the monocots, we investigated whether climatic patterns could explain differences between geophytes and non-geophytes, as well as differences among bulbous, cormous, tuberous, rhizomatous, and non-geophytic taxa. We used phylogenetically-informed ANOVAs, MANOVAs, and PCAs to test differences in climatic variables between the different growth forms. RESULTS: Geophytes inhabit cooler, drier, and more thermally variable climates compared to non-geophytes. Although some underground traits (i.e., bulb, corm, and tuber) appear to inhabit particular niches, a result supported by strong phylogenetic signal, our data has limited evidence for an overall role of climate in the evolution of these traits. However, temperature may be a driving force in rhizome evolution, as well as the evolution of taxa which we considered here as non-geophytic (e.g., trees, epiphytes, etc.). CONCLUSIONS: While precipitation patterns have played a role in the evolution of geophytism, our results suggest that temperature should be more strongly considered as a contributing factor promoting the evolution of belowground bud placement, specifically in rhizomatous and non-geophytic taxa. Bulbous, cormous, and tuberous taxa need closer examination of other mechanisms, such as anatomical constraints or genetic controls, in order to begin to understand the causes behind the evolution of their underground morphology.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Dispersão Vegetal , Clima , Magnoliopsida/crescimento & desenvolvimento , Filogenia
16.
Am Nat ; 192(2): 171-187, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016161

RESUMO

Elucidating the dynamic distribution of organismal lineages has been central to biology since the nineteenth century, yet the difficulty of combining biogeographic methods with shifts in habitat suitability remains a limitation. This integration, however, is critical to understanding geographic distributions, present and past, as well as the time-extended trajectories of lineages. Here, we link previous advances in phyloclimatic modeling to develop a framework that overcomes existing methodological gaps by predicting potential ecological and geographic overlap directly from estimated ancestral trait distributions. We show the utility of this framework by focusing on a clade in the montane angiosperm genus Heuchera, which is noteworthy in that it experienced ancient introgression from circumboreally distributed species of Mitella, lineages now ~1,300 km disjunct. Using this system, we demonstrate an application of ancestral state reconstruction to assess geographic range dynamics in a lineage lacking a fossil record. We test hypotheses regarding inferred past geographic distributions and examine the potential for ancient geographic contact. Application of this multifaceted approach suggests potential past contact between species of Heuchera and Mitella in western North America during cooler periods of the Pleistocene. Integration of niche models and phylogenetic estimates suggests that climatic cooling may have promoted range contact and gene flow between currently highly disjunct species. Our approach has wide applicability for testing hypotheses concerning organismal co-occurrences in deep time.


Assuntos
Heuchera/genética , Hibridização Genética , Modelos Biológicos , California , Ecossistema , Filogeografia
17.
Mol Phylogenet Evol ; 123: 88-100, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29496541

RESUMO

Disjunct distributions have intrigued biologists for centuries. Investigating these biogeographic patterns provides insight into speciation and biodiversity at multiple spatial and phylogenetic scales. Some disjunctions have been intensively studied, yet others have been largely overlooked and remain poorly understood. Among the lesser-known disjunction patterns is that between the mountain ranges of western North America. Flora and fauna endemic to the mountains of this region provide important systems for investigating causes and results of disjunctions, given the relatively recent geological formation of this area and the intense climatic fluctuations that have occurred since its formation. In Micranthes (Saxifragaceae), which has high rates of montane endemism, two species, M. bryophora and M. tolmiei, show this biogeographical pattern. By reconstructing a time-calibrated phylogeny based on 518 low-copy nuclear markers and including multiple populations of each species from the Coast Ranges, Cascades, Sierra Nevada, and Rocky Mountains, this study provides a biogeographical and temporal framework for the evolution of Micranthes in western North America. Strongly supported east-west differentiated clades are recovered for M. bryophora and M. tolmiei in both maximum likelihood and coalescent-based species tree reconstructions. Biogeographic analysis suggests different patterns of dispersal for both taxa and the dating analyses recovered contrasting ages for each clade. Due to both the different geographic patterns and the timing of the initial diversification of each taxon corresponding to different geologic and climatic events, the disjunction patterns shown for these taxa are suggested to be an example of biogeographical pseudocongruence.


Assuntos
Ecossistema , Filogenia , Saxifragaceae/classificação , Biodiversidade , Funções Verossimilhança , América do Norte , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
18.
Syst Biol ; 66(3): 320-337, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637567

RESUMO

While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages-clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (~400,000 bp), plastid (~160,000 bp), and mitochondrial (~470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera. By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera,consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia. Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord. [Ancient hybridization; chloroplast capture; incongruence; phylogenomics; reticulation.].


Assuntos
Fluxo Gênico , Genoma de Planta/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Evolução Biológica
19.
Syst Biol ; 66(4): 644-656, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798406

RESUMO

The nature and definition of species continue to be matters of debate. Current views of species often focus on their nature as lineages-maximal reproductive communities through time. Whereas many authors point to the Evolutionary Species Concept as optimal, in its original form it stressed the ecological role of species as well as their history as lineages, but most recent authors have ignored the role aspect of the concept, making it difficult to apply unambiguously in a time-extended way. This trend has been exacerbated by the application of methods and concepts emphasizing the notion of monophyly, originally applied only at higher levels, to the level of individuals, as well as by the current emphasis on molecular data. Hence, some current authors recognize units that are no more than probable exclusive lineages as species. We argue that biodiversity is inherently a phenotypic concept and that role, as manifested in the organismal extended phenotype, is a necessary component of the species concept. Viewing species as historically connected populations with unique role brings together the temporal and phenotypic natures of species, providing a clear way to view species both in a time-limited and time-extended way. Doing so alleviates perceived issues with "paraphyletic species" and returns the focus of species to units that are most relevant for biodiversity.


Assuntos
Biodiversidade , Classificação , Filogenia , Evolução Biológica , Ecologia
20.
Am J Bot ; 105(3): 364-375, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29683488

RESUMO

Assessing the relative importance of the various pathways to diversification is a central goal of biodiversity researchers. For plant biologists, and increasingly across the spectrum of biological sciences, among these pathways of interest is hybridization. New methodological developments are moving the field away from questions of whether natural hybridization occurs or hybrids can persist and toward more direct assessments of the long-term impact of hybridization on diversification and genome organization. Advances in theory and new data, especially phylogenomic data, have changed the face of this field, revealing extensive occurrences of hybridization at both shallow and deep levels, but lacking is a synthesis of these advancements. Here we provide an overview of methods that have been proposed for detecting hybridization with molecular data and advocate a time-extended, comparative view of reticulate evolution. In particular, we pose three overarching questions, newly placed within reach, that are critical for advancing our understanding of hybridization pattern and process: (1) How often is introgression biased toward certain genomes and loci, and is this bias selectively neutral? (2) What are the relative rates of formation of hybrid species and introgressants, and how does this compare to their subsequent fates? (3) Has the frequency of hybridization increased under historical periods of greater dynamism in climate and geographic range, such as the Pleistocene?


Assuntos
Evolução Molecular , Loci Gênicos , Genoma de Planta , Hibridização Genética , Plantas/genética , Biodiversidade , Especiação Genética , Genômica/métodos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA