Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 17(5): 514-522, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27043414

RESUMO

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Assuntos
DNA/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Citosol/imunologia , Citosol/metabolismo , Citosol/virologia , DNA/genética , DNA/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Imunização/métodos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Ovalbumina/genética , Ovalbumina/imunologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
2.
J Biol Chem ; 298(9): 102277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863436

RESUMO

La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5'TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.


Assuntos
Aminoácidos , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases , Sequência de Oligopirimidina na Região 5' Terminal do RNA , RNA Mensageiro , Proteínas de Ligação a RNA , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Animais , Técnicas de Cultura de Células , Imunoprecipitação da Cromatina , Fator de Iniciação 4E em Eucariotos/metabolismo , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Nucleic Acids Res ; 49(1): 458-478, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33332560

RESUMO

The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth, integrating multiple signalling cues and pathways. Key among the downstream activities of mTOR is the control of the protein synthesis machinery. This is achieved, in part, via the co-ordinated regulation of mRNAs that contain a terminal oligopyrimidine tract (TOP) at their 5'ends, although the mechanisms by which this occurs downstream of mTOR signalling are still unclear. We used RNA-binding protein (RBP) capture to identify changes in the protein-RNA interaction landscape following mTOR inhibition. Upon mTOR inhibition, the binding of LARP1 to a number of mRNAs, including TOP-containing mRNAs, increased. Importantly, non-TOP-containing mRNAs bound by LARP1 are in a translationally-repressed state, even under control conditions. The mRNA interactome of the LARP1-associated protein PABPC1 was found to have a high degree of overlap with that of LARP1 and our data show that PABPC1 is required for the association of LARP1 with its specific mRNA targets. Finally, we demonstrate that mRNAs, including those encoding proteins critical for cell growth and survival, are translationally repressed when bound by both LARP1 and PABPC1.


Assuntos
Autoantígenos/fisiologia , Proteína I de Ligação a Poli(A)/fisiologia , Polirribossomos/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Regiões 5' não Traduzidas/genética , Autoantígenos/genética , Regulação da Expressão Gênica , Genes Reporter , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Naftiridinas/farmacologia , Mutação Puntual , Biossíntese de Proteínas/genética , Interferência de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/genética , Antígeno SS-B
4.
Nucleic Acids Res ; 49(6): 3461-3489, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398329

RESUMO

LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear. Herein we elucidate the mechanism by which mTORC1 controls LARP1's translation repression activity. We demonstrate that mTORC1 phosphorylates LARP1 in vitro and in vivo, activities that are efficiently inhibited by rapamycin and torin1. We uncover 26 rapamycin-sensitive phospho-serine and -threonine residues on LARP1 that are distributed in 7 clusters. Our data show that phosphorylation of a cluster of residues located proximally to the m7Gppp cap-binding DM15 region is particularly sensitive to rapamycin and regulates both the RNA-binding and the translation inhibitory activities of LARP1. Our results unravel a new model of translation control in which the La module (LaMod) and DM15 region of LARP1, both of which can directly interact with TOP mRNA, are differentially regulated: the LaMod remains constitutively bound to PABP (irrespective of the activation status of mTORC1), while the C-terminal DM15 'pendular hook' engages the TOP mRNA 5'-end to repress translation, but only in conditions of mTORC1 inhibition.


Assuntos
Autoantígenos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Motivos de Aminoácidos , Autoantígenos/química , Células HEK293 , Humanos , Naftiridinas/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ribonucleoproteínas/química , Serina/metabolismo , Sirolimo/farmacologia , Treonina/metabolismo , Tirosina/metabolismo , Antígeno SS-B
5.
RNA Biol ; 18(2): 259-274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522422

RESUMO

La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.


Assuntos
Autoantígenos/metabolismo , Poli A , Proteínas de Ligação a Poli(A)/metabolismo , Ribonucleoproteínas/metabolismo , Motivos de Aminoácidos , Humanos , Filogenia , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/genética , Antígeno SS-B
6.
RNA Biol ; 18(2): 275-289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33292040

RESUMO

The protein domain arrangement known as the La-module, comprised of a La motif (LaM) followed by a linker and RNA recognition motif (RRM), is found in seven La-related proteins: LARP1, LARP1B, LARP3 (La protein), LARP4, LARP4B, LARP6, and LARP7 in humans. Several LARPs have been characterized for their distinct activity in a specific aspect of RNA metabolism. The La-modules vary among the LARPs in linker length and RRM subtype. The La-modules of La protein and LARP7 bind and protect nuclear RNAs with UUU-3' tails from degradation by 3' exonucleases. LARP4 is an mRNA poly(A) stabilization factor that binds poly(A) and the cytoplasmic poly(A)-binding protein PABPC1 (also known as PABP). LARP1 exhibits poly(A) length protection and mRNA stabilization similar to LARP4. Here, we show that these LARP1 activities are mediated by its La-module and dependent on a PAM2 motif that binds PABP. The isolated La-module of LARP1 is sufficient for PABP-dependent poly(A) length protection and mRNA stabilization in HEK293 cells. A point mutation in the PAM2 motif in the La-module impairs mRNA stabilization and PABP binding in vivo but does not impair oligo(A) RNA binding by the purified recombinant La-module in vitro. We characterize the unusual PAM2 sequence of LARP1 and show it may differentially affect stable and unstable mRNAs. The unique LARP1 La-module can function as an autonomous factor to confer poly(A) protection and stabilization to heterologous mRNAs.


Assuntos
Autoantígenos/química , Autoantígenos/metabolismo , Oligopeptídeos/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Sítios de Ligação , Células HEK293 , Humanos , Motivos de Nucleotídeos , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Antígeno SS-B
7.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967092

RESUMO

The intracellular parasite Toxoplasma gondii promotes infection by targeting multiple host cell processes; however, whether it modulates mRNA translation is currently unknown. Here, we show that infection of primary murine macrophages with type I or II T. gondii strains causes a profound perturbation of the host cell translatome. Notably, translation of transcripts encoding proteins involved in metabolic activity and components of the translation machinery was activated upon infection. In contrast, the translational efficiency of mRNAs related to immune cell activation and cytoskeleton/cytoplasm organization was largely suppressed. Mechanistically, T. gondii bolstered mechanistic target of rapamycin (mTOR) signaling to selectively activate the translation of mTOR-sensitive mRNAs, including those with a 5'-terminal oligopyrimidine (5' TOP) motif and those encoding mitochondrion-related proteins. Consistent with parasite modulation of host mTOR-sensitive translation to promote infection, inhibition of mTOR activity suppressed T. gondii replication. Thus, selective reprogramming of host mRNA translation represents an important subversion strategy during T. gondii infection.


Assuntos
Interações Hospedeiro-Parasita , Macrófagos/parasitologia , Biossíntese de Proteínas/genética , Toxoplasma/patogenicidade , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas de Protozoários/imunologia , Sequência de Oligopirimidina na Região 5' Terminal do RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
8.
Semin Cell Dev Biol ; 36: 102-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263010

RESUMO

Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.


Assuntos
Biossíntese de Proteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Iniciação Traducional da Cadeia Peptídica/genética , Fosforilação , Dobramento de Proteína , RNA Mensageiro/genética , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Transdução de Sinais/genética
9.
J Biol Chem ; 290(26): 15996-6020, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25940091

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.


Assuntos
Autoantígenos/metabolismo , Regulação para Baixo , Glicoproteínas de Membrana/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Glicoproteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Longo não Codificante , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteína Regulatória Associada a mTOR , Ribonucleoproteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Antígeno SS-B
10.
J Biol Chem ; 287(21): 17530-17545, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474287

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.


Assuntos
Antinematódeos/farmacologia , Niclosamida/farmacologia , Proteínas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR
11.
J Biol Chem ; 286(31): 27111-22, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21659537

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) links the control of mRNA translation, cell growth, and metabolism to diverse stimuli. Inappropriate activation of mTORC1 can lead to cancer. Phorbol esters are naturally occurring products that act as potent tumor promoters. They activate isoforms of protein kinase C (PKCs) and stimulate the oncogenic MEK/ERK signaling cascade. They also activate mTORC1 signaling. Previous work indicated that mTORC1 activation by the phorbol ester PMA (phorbol 12-myristate 13-acetate) depends upon PKCs and may involve MEK. However, the precise mechanism(s) through which they activate mTORC1 remains unclear. Recent studies have implicated both the ERKs and the ERK-activated 90-kDa ribosomal S6 kinases (p90(RSK)) in activating mTORC1 signaling via phosphorylation of TSC2 (a regulator of mTORC1) and/or the mTORC1 component raptor. However, the relative importance of each of these kinases and phosphorylation events for the activation of mTORC1 signaling is unknown. The recent availability of MEK (PD184352) and p90(RSK) (BI-D1870) inhibitors of improved specificity allowed us to address the roles of these protein kinases in controlling mTORC1 in a variety of human and rodent cell types. In parallel, we used specific shRNAs against p90(RSK1) and p90(RSK2) to further test their roles in regulating mTORC1 signaling. Our data indicate that p90(RSKs) are dispensable for the activation of mTORC1 signaling by phorbol esters in all cell types tested. Our data also reveal striking diversity in the requirements for MEK/ERK in the control of mTORC1 between different cell types, pointing to additional signaling connections between phorbol esters and mTORC1, which do not involve MEK/ERK. This study provides important information for the design of efficient strategies to combat the hyperactivation of mTORC1 signaling by oncogenic pathways.


Assuntos
Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Pteridinas/farmacologia , Ratos , Ratos Sprague-Dawley
12.
Biochim Biophys Acta ; 1804(3): 433-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20005306

RESUMO

Recent years have observed significant advances in our understanding of how the serine/threonine kinase target of rapamycin (TOR) controls key cellular processes such as cell survival, growth and proliferation. Consistent with its role in cell proliferation, the mTOR pathway is frequently hyperactivated in a number of human malignancies and is thus considered to be an attractive target for anti-cancer therapy. Rapamycin and its analogs (rapalogs) function as allosteric inhibitors of mTORC1 and are currently used in the treatment of advanced renal cell carcinoma. Rapamycin and its derivatives bind to the small immunophilin FKBP12 to inhibit mTORC1 signalling through a poorly understood mechanism. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Several novel active-site inhibitors of mTOR, which inhibit both mTORC1 and mTORC2, were developed in the last year. In this manuscript, we provide a brief outline of our current understanding of the mTOR signalling pathway and review the molecular underpinnings of the action of rapamycin and novel active-site mTOR inhibitors as well as potential advantages and caveats associated with the use of these drugs in the treatment of cancer.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Proteína 1A de Ligação a Tacrolimo/antagonistas & inibidores , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
13.
Biochem J ; 411(1): 141-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18215133

RESUMO

PRAS40 binds to the mTORC1 (mammalian target of rapamycin complex 1) and is released in response to insulin. It has been suggested that this effect is due to 14-3-3 binding and leads to activation of mTORC1 signalling. In a similar manner to insulin, phorbol esters also activate mTORC1 signalling, in this case via PKC (protein kinase C) and ERK (extracellular-signal-regulated kinase). However, phorbol esters do not induce phosphorylation of PRAS40 at Thr(246), binding of 14-3-3 proteins to PRAS40 or its release from mTORC1. Mutation of Thr(246) to a serine residue permits phorbol esters to induce phosphorylation and binding to 14-3-3 proteins. Such phosphorylation is apparently mediated by RSKs (ribosomal S6 kinases), which lie downstream of ERK. However, although the PRAS40(T246S) mutant binds to 14-3-3 better than wild-type PRAS40, each inhibits mTORC1 signalling to a similar extent. Our results show that activation of mTORC1 signalling by phorbol esters does not require PRAS40 to be phosphorylated at Thr(246), bind to 14-3-3 or be released from mTORC1. It is conceivable that phorbol esters activate mTORC1 by a distinct mechanism not involving PRAS40. Indeed, our results suggest that PRAS40 may not actually be involved in controlling mTORC1, but rather be a downstream target of mTORC1 that is regulated in response only to specific stimuli, such as insulin.


Assuntos
Proteínas 14-3-3/metabolismo , Ésteres de Forbol/farmacologia , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular , Humanos , Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Proteínas , Serina-Treonina Quinases TOR
14.
Structure ; 27(12): 1771-1781.e5, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31676287

RESUMO

The RNA-binding protein La-related protein 1 (LARP1) plays a central role in ribosome biosynthesis. Its C-terminal DM15 region binds the 7-methylguanosine (m7G) cap and 5' terminal oligopyrimidine (TOP) motif characteristic of transcripts encoding ribosomal proteins and translation factors. Under the control of mammalian target of rapamycin complex 1 (mTORC1), LARP1 regulates translation of these transcripts. Characterizing the dynamics of DM15-TOP recognition is essential to understanding this fundamental biological process. We use molecular dynamics simulations, biophysical assays, and X-ray crystallography to reveal the mechanism of DM15 binding to TOP transcripts. Residues C-terminal to the m7G-binding site play important roles in cap recognition. Furthermore, we show that the unusually static pocket that recognizes the +1 cytosine characteristic of TOP transcripts drives binding specificity. Finally, we demonstrate that the DM15 pockets involved in TOP-specific m7GpppC-motif recognition are likely druggable. Collectively, these studies suggest unique opportunities for further pharmacological development.


Assuntos
Autoantígenos/química , Guanosina/análogos & derivados , RNA Mensageiro/química , Ribonucleoproteínas/química , Proteína S6 Ribossômica/química , Motivos de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanosina/química , Guanosina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Especificidade por Substrato , Termodinâmica , Antígeno SS-B
15.
FEBS J ; 275(9): 2185-99, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384376

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) phosphorylates proteins such as eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and the S6 kinases. These substrates contain short sequences, termed TOR signalling (TOS) motifs, which interact with the mTORC1 component raptor. Phosphorylation of 4E-BP1 requires an additional feature, termed the RAIP motif (Arg-Ala-Ile-Pro). We have analysed the interaction of 4E-BP1 with raptor and the amino acid residues required for functional RAIP and TOS motifs, as assessed by raptor binding and the phosphorylation of 4E-BP1 in human cells. Binding of 4E-BP1 to raptor strongly depends on an intact TOS motif, but the RAIP motif and additional C-terminal features of 4E-BP1 also contribute to this interaction. Mutational analysis of 4E-BP1 reveals that isoleucine is a key feature of the RAIP motif, that proline is also very important and that there is greater tolerance for substitution of the first two residues. Within the TOS motif, the first position (phenylalanine in the known motifs) is most critical, whereas a wider range of residues function in other positions (although an uncharged aliphatic residue is preferred at position three). These data provide important information on the structural requirements for efficient signalling downstream of mTORC1.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/genética , Glutationa Transferase/metabolismo , Humanos , Isoleucina/metabolismo , Rim/citologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Serina-Treonina Quinases TOR , Transfecção
16.
Wiley Interdiscip Rev RNA ; 9(5): e1480, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29722158

RESUMO

The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.

17.
Elife ; 62017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28379136

RESUMO

The 5'terminal oligopyrimidine (5'TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.


Assuntos
Autoantígenos/química , Autoantígenos/metabolismo , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Sequência de Oligopirimidina na Região 5' Terminal do RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Imunoprecipitação da Cromatina , Cristalografia por Raios X , Regulação da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Estabilidade de RNA , Antígeno SS-B
18.
Nat Commun ; 7: 11776, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27319316

RESUMO

Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1-3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP2, is transcriptionally induced during prolonged mTORC1 inhibition in vitro and in vivo. Mechanistically, our data reveal that 4E-BP3 expression is controlled by the transcription factor TFE3 through a cis-regulatory element in the EIF4EBP3 gene promoter. CRISPR/Cas9-mediated EIF4EBP3 gene disruption in human cancer cells mitigated the inhibition of translation and proliferation caused by prolonged treatment with mTOR inhibitors. Our findings show that 4E-BP3 is an important effector of mTORC1 and a robust predictive biomarker of therapeutic response to prolonged treatment with mTOR-targeting drugs in cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Serina-Treonina Quinases TOR/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proliferação de Células , Bases de Dados Genéticas , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Feminino , Edição de Genes/métodos , Células HeLa , Células Hep G2 , Humanos , Indóis/farmacologia , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Purinas/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Análise de Sobrevida , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
19.
Cancer Res ; 72(24): 6468-76, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23100465

RESUMO

Active-site mTOR inhibitors (asTORi) hold great promise for targeting dysregulated mTOR signaling in cancer. Because of the multifaceted nature of mTORC1 signaling, identification of reliable biomarkers for the sensitivity of tumors to asTORi is imperative for their clinical implementation. Here, we show that cancer cells acquire resistance to asTORi by downregulating eukaryotic translation initiation factor (eIF4E)-binding proteins (4E-BPs-EIF4EBP1, EIF4EBP2). Loss of 4E-BPs or overexpression of eIF4E renders neoplastic growth and translation of tumor-promoting mRNAs refractory to mTOR inhibition. Conversely, moderate depletion of eIF4E augments the anti-neoplastic effects of asTORi. The anti-proliferative effect of asTORi in vitro and in vivo is therefore significantly influenced by perturbations in eIF4E/4E-BP stoichiometry, whereby an increase in the eIF4E/4E-BP ratio dramatically limits the sensitivity of cancer cells to asTORi. We propose that the eIF4E/4E-BP ratio, rather than their individual protein levels or solely their phosphorylation status, should be considered as a paramount predictive marker for forecasting the clinical therapeutic response to mTOR inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Fator de Iniciação 4E em Eucariotos/fisiologia , Terapia de Alvo Molecular , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fosfoproteínas/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Proteínas de Ciclo Celular , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prognóstico , Resultado do Tratamento
20.
Mol Cell Biol ; 32(17): 3585-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751931

RESUMO

The binding of the eukaryotic initiation factor 4E (eIF4E) to the mRNA 5' cap structure is a rate-limiting step in mRNA translation initiation. eIF4E promotes ribosome recruitment to the mRNA. In Drosophila, the eIF4E homologous protein (d4EHP) forms a complex with binding partners to suppress the translation of distinct mRNAs by competing with eIF4E for binding the 5' cap structure. This repression mechanism is essential for the asymmetric distribution of proteins and normal embryonic development in Drosophila. In contrast, the physiological role of the mammalian 4EHP (m4EHP) was not known. In this study, we have identified the Grb10-interacting GYF protein 2 (GIGYF2) and the zinc finger protein 598 (ZNF598) as components of the m4EHP complex. GIGYF2 directly interacts with m4EHP, and this interaction is required for stabilization of both proteins. Disruption of the m4EHP-GIGYF2 complex leads to increased translation and perinatal lethality in mice. We propose a model by which the m4EHP-GIGYF2 complex represses translation of a subset of mRNAs during embryonic development, as was previously reported for d4EHP.


Assuntos
Proteínas de Transporte/metabolismo , Embrião de Mamíferos/embriologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas , Motivos de Aminoácidos , Animais , Proteínas de Transporte/química , Embrião de Mamíferos/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA