RESUMO
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análiseRESUMO
Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.
Assuntos
Camada de Gelo , Desenvolvimento Vegetal , Regiões Árticas , Clima , Umidade , Modelos Teóricos , Estações do Ano , Solo , TemperaturaRESUMO
Heterogeneity has been observed in the responses of Arctic shrubs to climate variability over recent decades, which may reflect landscape-scale variability in belowground resources. At a northern fringe of tall shrub expansion (Yuribei, Yamal Peninsula, Russia), we sought to determine the mechanisms relating nitrogen (N) limitation to shrub growth over decadal time. We analysed the ratio of 15 N to 14 N isotopes in wood rings of 10 Salix lanata individuals (399 measurements) to reconstruct annual point-based bioavailable N between 1980 and 2013. We applied a model-fitting/model-selection approach with a suite of competing ecological models to assess the most-likely mechanisms that explain each shrub's individual time-series. Shrub δ15 N time-series indicated declining (seven shrubs), increasing (two shrubs) and no trend (one shrub) in N availability. The most appropriate model for all shrubs included N-dependent growth of linear rather than saturating form. Inclusion of plant-soil feedbacks better explained ring width and δ15 N for eight of 10 individuals. Although N trajectories were individualistic, common mechanisms of varying strength confirmed the N-dependency of shrub growth. The linear mechanism may reflect intense scavenging of scarce N; the importance of plant-soil feedbacks suggests that shrubs subvert the microbial bottleneck by actively controlling their environment.
Assuntos
Nitrogênio , Solo , Regiões Árticas , Clima , Ecossistema , PlantasRESUMO
QUESTIONS: How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient? LOCATION: 1700-km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia. METHODS: The Braun-Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest-tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors. RESULTS: Clear, mostly non-linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest-tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age. CONCLUSIONS: Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground-based vegetation data for satellite-based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on-going climate change.
RESUMO
Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism.
Assuntos
Mudança Climática , Camada de Gelo , Rena , Criação de Animais Domésticos , Migração Animal , Animais , Regiões Árticas , Humanos , Chuva , Sibéria , Neve , TundraRESUMO
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m-2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
Assuntos
Ecossistema , Plantas , Árvores , Regiões Árticas , BiomassaRESUMO
Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.
Assuntos
Ecossistema , Tundra , Sementes , Mudança Climática , FenótipoRESUMO
Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience.
Assuntos
Ecossistema , Criação de Animais Domésticos , Migração Animal , Animais , Regiões Árticas , Biomassa , Mudança Climática , Humanos , Rena/fisiologia , Estações do Ano , Sibéria , Meio SocialRESUMO
As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts.
RESUMO
Snow conditions play an important role for reindeer herding. In particular, the formation of ice crusts after rain-on-snow (ROS) events or general surface thawing with subsequent refreezing impedes foraging. Such events can be monitored using satellite data. A monitoring scheme has been developed for observation at the circumpolar scale based on data from the active microwave sensor SeaWinds on QuikSCAT (Ku-band), which is sensitive to changes on the snow surface. Ground observations on Yamal Peninsula were used for algorithm development. Snow refreezing patterns are presented for northern Eurasia above 60 degrees N from autumn 2001 to spring 2008. Western Siberia is more affected than Central and Eastern Siberia in accordance with climate data, and most events occur in November and April. Ice layers in late winter have an especially negative effect on reindeer as they are already weakened. Yamal Peninsula is located within a transition zone between high and low frequency of events. Refreezing was observed more than once a winter across the entire peninsula during recent years. The southern part experienced refreezing events on average four times each winter. Currently, herders can migrate laterally or north-south, depending on where and when a given event occurs. However, formation of ice crusts in the northern part of the peninsula may become as common as they are now in the southern part. Such a development would further constrain the possibility to migrate on the peninsula.
Assuntos
Congelamento , Rena/fisiologia , Neve , Agricultura , Migração Animal , Animais , Regiões Árticas , Mudança Climática , Estações do Ano , Sibéria , Fatores de TempoRESUMO
Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.
Assuntos
Ecossistema , Estações do Ano , Tundra , Regiões Árticas , Mudança Climática , Monitoramento Ambiental , Desenvolvimento Vegetal , Plantas , Solo , TemperaturaRESUMO
In this study, we assess the effect of the lake size on the accuracy of a threshold-based classification of ground-fast and floating lake ice from Sentinel-1 Synthetic Aperture Radar (SAR) imagery. For that purpose, two new methods (flood-fill and watershed method) are introduced and the results between the three classification approaches are compared regarding different lake size classes for a study area covering most of the Yamal Peninsula in Western Siberia. The focus is on April, the stage of maximum lake ice thickness, for the years 2016 and 2017. The results indicate that the largest lakes are likely most prone to errors by the threshold classification. The newly introduced methods seem to improve classification results. The results also show differences in fractions of ground-fast lake ice between 2016 and 2017, which might reflect differences in temperatures between the winters with severe impact on wildlife and freshwater fish resources in the region. Patterns of low backscatter responsible for the classification errors in the centre of the lakes were investigated and compared to the optical Sentinel-2 imagery of late-winter. Strong similarities between some patterns in the optical and SAR data were identified. They might be zones of thin ice, but further research is required for clarification of this phenomenon and its causes.
RESUMO
Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
RESUMO
The rapid decline in Arctic sea ice poses urgent questions concerning its ecological effects, such as on tundra terrestrial productivity. However, reported sea ice/terrestrial productivity linkages have seldom been constrained, and the mechanism governing them remains elusive, with a diversity of spatial scales and metrics proposed, at times in contradiction to each other. In this study, we use spatially explicit remotely sensed sea ice concentration and high-resolution terrestrial productivity estimates (Normalised Difference Vegetation Index, NDVI) across the Svalbard Archipelago to describe local/sub-regional and large-scale components of sea ice/terrestrial productivity coupling. Whereas the local/sub-regional component is attributed to sea breeze (cold air advection from ice-covered ocean onto adjacent land during the growing season), the large-scale component might reflect co-variability of sea ice and tundra productivity due to a common forcing, such as large-scale atmospheric circulation (North Atlantic Oscillation, NAO). Our study clarifies the range of mechanisms in sea ice/terrestrial productivity coupling, allowing the generation of testable hypotheses about its past, present, and future dynamics across the Arctic.
RESUMO
Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems.
Assuntos
Mudança Climática , Rena/fisiologia , Temperatura , Animais , Animais Domésticos , Animais Selvagens , Regiões Árticas , Ásia Setentrional , Clima , Ecossistema , Europa (Continente) , Dinâmica Populacional/tendências , Federação Russa , Estações do Ano , SibériaRESUMO
According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome delimitation problem, help in consistent characterization of research sites, and create a basis for further biogeographic and ecological research in global tundra environments.
RESUMO
This paper discusses the role of companies in high-latitude regions, which are conceptualized as socially and economically mediated ecosystems, and identifies a number of important social actors within the business environment. We present three examples of corporate activity at high latitudes and discuss a variety of common threads. Notably, we argue that business theory and practice needs to move beyond a narrow social or economic concept of organizational resilience and embrace the ecological resilience of high-latitude regions as a business management goal. We also suggest that regional ecosystem resilience needs to become a meaningful measure of sustainable corporate governance, one that corporate boards of directors can review and commit to. The paper concludes with a call for a detailed research agenda on the role of transnational and national companies within high-latitude regions.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Indústrias/organização & administração , Altitude , Comércio , Humanos , Política Organizacional , Formulação de Políticas , Condições SociaisRESUMO
Across the circumpolar North large disparities in the distribution of renewable and nonrenewable resources, human population density, capital investments, and basic residential and transportation infrastructure combine to create recognizable hotspots of recent and foreseeable change. Northern Fennoscandia exemplifies a relatively benign situation due to its current economic and political stability. Northern Russia is experiencing rapid, mostly negative changes reflecting the general state of crisis since the collapse of the Soviet Union. North America enjoys a relatively stable regulatory structure to mitigate environmental degradation associated with industry, but is on the verge of approving massive new development schemes that would significantly expand the spatial extent of potentially affected social-ecological systems. Institutional or regulatory context influences the extent to which ecosystem services are buffered against environmental change. With or without a warming climate, certain geographic areas appear especially vulnerable to damages that may threaten their ability to supply goods and services in the near future. Climate change may exacerbate this situation in some places but may offer opportunities to enhance resilience in the long term.