Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 196: 106924, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709185

RESUMO

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.

2.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511023

RESUMO

1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells. This study investigated the characterization of two new compounds named 6 and 14 on HeLa and PC-3 cancer cell lines. Based on the previously obtained IC50, cell cycle effects were monitored by flow cytometry. RNA sequencing (RNAseq) was performed to identify differentially expressed genes, followed by functional annotation using gene ontology (GO), KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network analyses. The tubulin polymerization assay was used to analyze the interaction of both compounds with tubulin. The results showed that 6 and 14 strongly inhibited the proliferation of cancer cells by arresting them in the G2/M phase of the cell cycle. Transcriptome analysis showed that exposure of HeLa and PC-3 cells to the compounds caused a marked reprograming of gene expression. Functional enrichment analysis indicated that differentially expressed genes were significantly enriched throughout the cell cycle and cancer-related biological processes. Furthermore, PPI network, hub gene, and CMap analyses revealed that compounds 14 and 6 shared target genes with established microtubule inhibitors, indicating points of similarity between the two molecules and microtubule inhibitors in terms of the mechanism of action. They were also able to influence the polymerization process of tubulin, suggesting the potential of these new compounds to be used as efficient chemotherapeutic agents.


Assuntos
Antineoplásicos , Calcogênios , Neoplasias , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Proliferação de Células , Antineoplásicos/farmacologia , Células HeLa , Moduladores de Tubulina/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
3.
Semin Cell Dev Biol ; 97: 26-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002867

RESUMO

Heart failure of ischemic origin is caused by the presence of a large scar resulting from an acute myocardial infarction. Acute myocardial infarction generally occurs when blood supply to the heart is blocked. Regenerative strategies that limit infarct injury would be able to prevent adverse post-ischemic remodelling and maintain the structural support necessary for effective cardiomyocyte contraction. Our understanding of endogenous cardiac regeneration and its biology has exposed a variety of targets for therapeutic approaches, such as non-coding RNAs, DNA methylation, histone modifications, direct cardiac reprogramming, cell transplantation, stimulation of resident cardiomyocytes, proliferation, and inhibition of cardiomyocyte death. In this review, we address the epigenetic mechanisms underlying these strategies and the use of therapeutic epigenetic molecules or epidrugs.


Assuntos
Reprogramação Celular/genética , Epigênese Genética/genética , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Humanos
4.
Methods ; 187: 68-76, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32360441

RESUMO

Super resolution microscopy has changed our capability to visualize and understand spatial arrangements of RNA- and protein-containing domains in individual cells. In a previous study, we described a novel lncRNA, Tumor-associated NBL2 transcript (TNBL), which originates from a primate specific macrosatellite repeat. We aimed to describe several aspects of TNBL lncRNA, with one focus being pinpointing its precise location in the nucleus, as well as visualizing its interactions with proteins to deduce its functionality. Using a combination of STimulated Emission Depletion (STED) super resolution microscopy, single molecule RNA (smRNA) FISH against TNBL, and immunofluorescence against SAM68 perinucleolar body, we resolved the spatial complexity of the interaction between TNBL aggregates and SAM68 bodies at the perinucleolar region. Here, we describe protocols for a step-by-step optimized smRNA FISH/IF and STED imaging, detailing parameter settings, and three-dimensional data analysis of spatial positioning of subnuclear structures. These protocols can be employed for single-cell imaging of complex nuclear RNA-protein structures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Epigenômica/métodos , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula/métodos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/métodos , RNA Longo não Codificante/análise , Análise Espaço-Temporal
5.
Nucleic Acids Res ; 46(11): 5504-5524, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29912433

RESUMO

Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.


Assuntos
Neoplasias do Colo/genética , Metilação de DNA/genética , DNA Satélite/genética , RNA Longo não Codificante/genética , Acetilação , Neoplasias da Mama/genética , Proteínas CELF1/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Células HCT116 , Histonas/metabolismo , Humanos , Mitose/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Neoplasias Ovarianas/genética
6.
Nature ; 494(7435): 105-10, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23354045

RESUMO

Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging owing to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle, which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2, encoding plakophilin-2 (ref. 9). The median age at presentation of ARVD/C is 26 years. We used previously published methods to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations. Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased ß-catenin activity in cardiogenic conditions; yet, these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor gamma (PPAR-γ) activation underlie the pathogenesis of ARVD/C. By co-activating normal PPAR-alpha-dependent metabolism and abnormal PPAR-γ pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in vitro model within 2 months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also had calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism has a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.


Assuntos
Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Transporte Ativo do Núcleo Celular , Idade de Início , Apoptose/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Reprogramação Celular , Meios de Cultura/farmacologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/fisiologia , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Glucose/metabolismo , Glicólise , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipogênese/genética , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/patologia , PPAR alfa/metabolismo , PPAR gama/metabolismo , Fenótipo , Placofilinas/genética , Fatores de Tempo , beta Catenina/metabolismo
8.
Int J Cancer ; 139(5): 1106-16, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074337

RESUMO

Squamous cell carcinomas have a range of histopathological manifestations. The parameters that determine this clinically observed heterogeneity are not fully understood. Here, we report the generation of a cell culture model that reflects part of this heterogeneity. We have used the catalytic subunit of human telomerase hTERT and large T to immortalize primary UV-unexposed keratinocytes. Then, mutant HRAS G12V has been introduced to transform these immortal keratinocytes. When injected into immunosuppressed mice, transformed cells grew as xenografts with distinct histopathological characteristics. We observed three major tissue architectures: solid, sarcomatoid and cystic growth types, which were primarily composed of pleomorphic and basaloid cells but in some cases displayed focal apocrine differentiation. We demonstrate that the cells generated represent different stages of skin cancerogenesis and as such can be used to identify novel tumor-promoting alterations such as the overexpression of the PADI2 oncogene in solid-type SCC. Importantly, the cultured cells maintain the characteristics from the xenograft they were derived from while being amenable to manipulation and analysis. The availability of cell lines representing different clinical manifestations opens a new tool to study the stochastic and deterministic factors that cause case-to-case heterogeneity despite departing from the same set of oncogenes and the same genetic background.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Mutação , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Expressão Gênica , Estudos de Associação Genética , Xenoenxertos , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos
9.
EMBO J ; 31(2): 301-16, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22068056

RESUMO

Tissue-specific transcriptional activators initiate differentiation towards specialized cell types by inducing chromatin modifications permissive for transcription at target loci, through the recruitment of SWItch/Sucrose NonFermentable (SWI/SNF) chromatin-remodelling complex. However, the molecular mechanism that regulates SWI/SNF nuclear distribution in response to differentiation signals is unknown. We show that the muscle determination factor MyoD and the SWI/SNF subunit BAF60c interact on the regulatory elements of MyoD-target genes in myoblasts, prior to activation of transcription. BAF60c facilitates MyoD binding to target genes and marks the chromatin for signal-dependent recruitment of the SWI/SNF core to muscle genes. BAF60c phosphorylation on a conserved threonine by differentiation-activated p38α kinase is the signal that promotes incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD-target genes. Our data support an unprecedented two-step model by which pre-assembled BAF60c-MyoD complex directs recruitment of SWI/SNF to muscle loci in response to differentiation cues.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Sistema de Sinalização das MAP Quinases , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/fisiologia , Proteína MyoD/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Helicases/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Células HeLa/metabolismo , Humanos , Camundongos , Complexos Multiproteicos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/química , Proteínas Musculares/genética , Mioblastos/metabolismo , Proteínas Nucleares/fisiologia , Fosforilação , Fosfotreonina/análise , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
10.
J Immunol ; 186(4): 2299-308, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21239708

RESUMO

3' Repair exonuclease (Trex1) is the most abundant mammalian 3' → 5' DNA exonuclease with specificity for ssDNA. Trex1 deficiency has been linked to the development of autoimmune disease in mice and humans, causing Aicardi-Goutières syndrome in the latter. In addition, polymorphisms in Trex1 are associated with systemic lupus erythematosus. On the basis of all these observations, it has been hypothesized that Trex1 acts by digesting an endogenous DNA substrate. In this study, we report that Trex1 is regulated by IFN-γ during the activation of primary macrophages. IFN-γ upregulates Trex1 with the time course of an early gene, and this induction occurs at the transcription level. The half-life of mRNA is relatively short (half-life of 70 min). The coding sequence of Trex1 has only one exon and an intron of 260 bp in the promoter in the nontranslated mRNA. Three transcription start sites were detected, the one at -580 bp being the most important. In transient transfection experiments using the Trex1 promoter, we have found that two IFN-γ activation site boxes, as well as an adaptor protein complex 1 box, were required for the IFN-γ-dependent induction. By using EMSA assays and chromatin immune precipitation assays, we determined that STAT1 binds to the IFN-γ activation site boxes. The requirement of STAT1 for Trex1 induction was confirmed using macrophages from Stat1 knockout mice. We also establish that c-Jun protein, but not c-Fos, jun-B, or CREB, bound to the adaptor protein complex 1 box. Therefore, our results indicate that IFN-γ induces the expression of the Trex1 exonuclease through STAT1 and c-Jun.


Assuntos
Exodesoxirribonucleases/biossíntese , Exodesoxirribonucleases/genética , Regulação da Expressão Gênica/imunologia , Interferon gama/fisiologia , Ativação de Macrófagos/imunologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Regiões Promotoras Genéticas/imunologia , Sítio de Iniciação de Transcrição , Regulação para Cima/genética , Regulação para Cima/imunologia
11.
Nat Genet ; 36(7): 738-43, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208625

RESUMO

During skeletal myogenesis, genomic reprogramming toward terminal differentiation is achieved by recruiting chromatin-modifying enzymes to muscle-specific loci. The relative contribution of extracellular signaling cascades in targeting these enzymes to individual genes is unknown. Here we show that the differentiation-activated p38 pathway targets the SWI-SNF chromatin-remodeling complex to myogenic loci. Upon differentiation, p38 kinases were recruited to the chromatin of muscle-regulatory elements. Blockade of p38 alpha/beta repressed the transcription of muscle genes by preventing recruitment of the SWI-SNF complex at these elements without affecting chromatin binding of muscle-regulatory factors and acetyltransferases. The SWI-SNF subunit BAF60 could be phosphorylated by p38 alpha-beta in vitro, and forced activation of p38 alpha/beta in myoblasts by expression of a constitutively active MKK6 (refs. 5,6,7) promoted unscheduled SWI-SNF recruitment to the myogenin promoter. Conversely, inactivation of SWI-SNF enzymatic subunits abrogated MKK6-dependent induction of muscle gene expression. These results identify an unexpected function of differentiation-activated p38 in converting external cues into chromatin modifications at discrete loci, by selectively targeting SWI-SNF to muscle-regulatory elements.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular , Imidazóis/farmacologia , Músculos/citologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
12.
Sci Rep ; 12(1): 6925, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484167

RESUMO

Evidence about the involvement of genetic factors in the development of gambling disorder (GD) has been assessed. Among studies assessing heritability and biological vulnerability for GD, neurotrophin (NTF) genes have emerged as promising targets, since a growing literature showed a possible link between NTF and addiction-related disorders. Thus, we aimed to explore the role of NTF genes and GD with the hypothesis that some NTF gene polymorphisms could constitute biological risk factors. The sample included 166 patients with GD and 191 healthy controls. 36 single nucleotide polymorphisms (SNPs) from NTFs (NGF, NGFR, NTRK1, BDNF, NTRK2, NTF3, NTRK3, NTF4, CNTF and CNTFR) were selected and genotyped. Linkage disequilibrium (LD) and haplotype constructions were analyzed, in relationship with the presence of GD. Finally, regulatory elements overlapping the identified SNPs variants associated with GD were searched. The between groups comparisons of allele frequencies indicated that 6 SNPs were potentially associated with GD. Single and multiple-marker analyses showed a strong association between both NTF3 and NTRK2 genes, and GD. The present study supports the involvement of the NTF family in the aetiopathogenesis of GD. An altered cross-regulation of different NTF members signalling pathways might be considered as a biological vulnerability factor for GD.


Assuntos
Jogo de Azar , Jogo de Azar/genética , Frequência do Gene , Haplótipos , Humanos , Fatores de Crescimento Neural/genética , Polimorfismo de Nucleotídeo Único
13.
Chem Biol Interact ; 312: 108813, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494105

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric tumor, which arises from muscle precursor cells. Recently, it has been demonstrated that Hippo Pathway (Hpo), a pathway that regulates several physiological and biological features, is involved in RMS tumorigenesis. For instance, an upregulation of the Hpo downstream effector Yes-Associated Protein 1 (YAP) leads to the development of embryonal rhabdomyosarcoma (eRMS) in murine activated muscle satellite cells. On the other hand, the YAP paralog transcriptional co-activator with PDZ-binding motif (TAZ) is overexpressed in alveolar rhabdomyosarcoma (aRMS) patients with poor survival. YAP and TAZ exhibit both cytoplasmic and nuclear functions. In the nucleus, YAP binds TEADs (TEA domain family members) factors and together they constitute a complex that is able either to activate the transcription of several genes such as MYC, Tbx5 and PAX8 or to maintain the stability of others like p73. Due to the key role of YAP and TAZ in cancer, the identification and/or development of new compounds able to block their activity might be an effective antineoplastic strategy. Verteporfin (VP) is a molecule able to stop the formation of YAP/TEAD complex in the nucleus. The aim of this study is to evaluate the action of VP on RMS cell lines. This work shows that VP has an anti-proliferative activity on all RMS cell lines analyzed. Depending on RMS cell lines, VP affects cell cycle differently. Moreover, VP is able to decrease YAP protein levels, and to induce the activation of apoptosis mechanism through the cleavage of PARP-1. In addition, Annexin V assay showed the activation of apoptosis and necrosis after VP treatment. In summary, the ability of VP to disrupt RMS cell proliferation could be a novel and valuable strategy to improve the therapeutic approaches in treating rhabdomyosarcoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Verteporfina/farmacologia , Aciltransferases , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Fatores de Transcrição/metabolismo
15.
Epigenetics ; 12(7): 515-526, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28426282

RESUMO

Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.


Assuntos
DNA Satélite , Distrofia Muscular Facioescapuloumeral/genética , Cromossomos Humanos Par 4/genética , Epigênese Genética , Genoma Humano , Humanos
16.
Epigenetics ; 12(3): 238-245, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28121228

RESUMO

The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled "Beyond Cancer Genomes" took place October 13th and 14th 2016 in Barcelona. The 2016 BCEC was the fourth edition of a series of annual conferences coordinated by Marcus Buschbeck and subsequently organized by leading research centers in Barcelona together with B•DEBATE, a joint initiative of BIOCAT and "La Caixa" Foundation. Salvador Aznar-Benitah, Eduard Batlle, and Raúl Méndez from the Institute for Research in Biomedicine in Barcelona selected the 2016 BCEC panel of speakers. As the title indicates, this year's conference expanded the epigenetic focus to include additional cancer-relevant topics, such as tumor heterogeneity and RNA regulation. Methods to develop therapeutic approaches on the basis of novel insights have been discussed in great detail. The conference has attracted 217 participants from 11 countries.


Assuntos
Epigênese Genética , Neoplasias/genética , Humanos
17.
Epigenomes ; 1(1)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31867127

RESUMO

DNA hypomethylation at repetitive elements accounts for the genome-wide DNA hypomethylation common in cancer, including colorectal cancer (CRC). We identified a pericentromeric repeat element called SST1 frequently hypomethylated (>5% demethylation compared with matched normal tissue) in several cancers, including 28 of 128 (22%) CRCs. SST1 somatic demethylation associated with genome damage, especially in tumors with wild-type TP53. Seven percent of the 128 CRCs exhibited a higher ("severe") level of demethylation (≥10%) that co-occurred with TP53 mutations. SST1 demethylation correlated with distinct histone marks in CRC cell lines and primary tumors: demethylated SST1 associated with high levels of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark and lower levels of histone 3 lysine 9 trimethylation (H3K9me3). Furthermore, induced demethylation of SST1 by 5-aza-dC led to increased H3K27me3 and reduced H3K9me3. Thus, in some CRCs, SST1 demethylation reflects an epigenetic reprogramming associated with changes in chromatin structure that may affect chromosomal integrity. The chromatin remodeler factor, the helicase lymphoid-specific (HELLS) enzyme, called the "epigenetic guardian of repetitive elements", interacted with SST1 as shown by chromatin immunoprecipitation, and down-regulation of HELLS by shRNA resulted in demethylation of SST1 in vitro. Altogether these results suggest that HELLS contributes to SST1 methylation maintenance. Alterations in HELLS recruitment and function could contribute to the somatic demethylation of SST1 repeat elements undergone before and/or during CRC pathogenesis.

18.
Mol Cancer Res ; 14(9): 841-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280713

RESUMO

UNLABELLED: Peptidyl arginine deiminases (PADI) are a family of enzymes that catalyze the poorly understood posttranslational modification converting arginine residues into citrullines. In this study, the role of PADIs in the pathogenesis of colorectal cancer was investigated. Specifically, RNA expression was analyzed and its association with survival in a cohort of 98 colorectal cancer patient specimens with matched adjacent mucosa and 50 controls from donors without cancer. Key results were validated in an independent collection of tumors with matched adjacent mucosa and by mining of a publicly available expression data set. Protein expression was analyzed by immunoblotting for cell lines or IHC for patient specimens that further included 24 cases of adenocarcinoma with adjacent dysplasia and 11 cases of active ulcerative colitis. The data indicate that PADI2 is the dominantly expressed PADI enzyme in colon mucosa and is upregulated during differentiation. PADI2 expression is low or absent in colorectal cancer. Frequently, this occurs already at the stage of low-grade dysplasia. Mucosal PADI2 expression is also low in ulcerative colitis. The expression level of PADI2 in tumor and adjacent mucosa correlates with differential survival: low levels associate with poor prognosis. IMPLICATIONS: Downregulation of PADI2 is an early event in the pathogenesis of colorectal cancer associated with poor prognosis and points toward a possible role of citrullination in modulating tumor cells and their microenvironment. Mol Cancer Res; 14(9); 841-8. ©2016 AACR.


Assuntos
Neoplasias Colorretais/enzimologia , Hidrolases/biossíntese , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Carcinogênese , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Colite Ulcerativa/enzimologia , Colite Ulcerativa/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Enterócitos/enzimologia , Enterócitos/patologia , Células HCT116 , Células HT29 , Humanos , Hidrolases/genética , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Prognóstico , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas
19.
Oncogene ; 23(12): 2177-87, 2004 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-14968110

RESUMO

The balance between acetylation and deacetylation of histone and nonhistone proteins controls gene expression in a variety of cellular processes, with transcription being activated by acetyltransferases and silenced by deacetylases. We report here the formation and enzymatic characterization of a complex between the acetyltransferase p300 and histone deacetylases. The C/H3 region of p300 was found to co-purify deacetylase activity from nuclear cell extracts. A prototype of class I histone deacetylases, HDAC1, interacts with p300 C/H3 domain in vitro and in vivo. The p300-binding protein E1A competes with HDAC1 for C/H3 binding; and, like E1A, HDAC1 overexpression interferes with either activation of Gal4p300 fusion protein or p300-dependent co-activation of two C/H3-binding proteins, MyoD and p53. The exposure to deacetylase inhibitors could reverse the dominant-negative effect of a C/H3 fragment insulated from the rest of the molecule, on MyoD- and p53-dependent transcription, whereas inhibition by E1A was resistant to trichostatin A. These data support the hypothesis that association between acetyltransferases and deacetylases can control the expression of genes implicated in cellular growth and differentiation, and suggest that the dominant-negative effect of the p300 C/H3 fragment relies on deacetylase recruitment.


Assuntos
Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Acetiltransferases/química , Proteínas E1A de Adenovirus/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histona Desacetilase 1 , Histona Desacetilases/genética , Humanos , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Células NIH 3T3 , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Transcrição Gênica , Ativação Transcricional , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Front Aging Neurosci ; 7: 123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217219

RESUMO

Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs). These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous ASCs are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will summarize the use of ASCs in muscle regenerative approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA