Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(5): 533-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526463

RESUMO

The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Animais , Camundongos , Lactente , Proteína Fosfatase 2/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Pulmão/metabolismo , Enfisema/tratamento farmacológico , Enfisema/metabolismo , Camundongos Knockout
2.
Clin Infect Dis ; 76(3): e727-e735, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604821

RESUMO

BACKGROUND: Prior studies have found that human immunodeficiency virus (HIV) infection is associated with impaired lung function and increased risk of chronic lung disease, but few have included large numbers of women. In this study, we investigate whether HIV infection is associated with differences in lung function in women. METHODS: This was a cross-sectional analysis of participants in the Women's Interagency HIV Study, a racially and ethnically diverse multicenter cohort of women with and without HIV. In 2018-2019, participants at 9 clinical sites were invited to perform spirometry. Single-breath diffusing capacity for carbon monoxide (DLCO) was also measured at selected sites. The primary outcomes were the post-bronchodilator forced expiratory volume in 1 second (FEV1) and DLCO. Multivariable regression modeling was used to analyze the association of HIV infection and lung function outcomes after adjustment for confounding exposures. RESULTS: FEV1 measurements from 1489 women (1062 with HIV, 427 without HIV) and DLCO measurements from 671 women (463 with HIV, 208 without HIV) met standards for quality and reproducibility. There was no significant difference in FEV1 between women with and without HIV. Women with HIV had lower DLCO measurements (adjusted difference, -0.73 mL/min/mm Hg; 95% confidence interval, -1.33 to -.14). Among women with HIV, lower nadir CD4 + cell counts and hepatitis C virus infection were associated with lower DLCO measurements. CONCLUSIONS: HIV was associated with impaired respiratory gas exchange in women. Among women with HIV, lower nadir CD4 + cell counts and hepatitis C infection were associated with decreased respiratory gas exchange.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Doença Pulmonar Obstrutiva Crônica/complicações , HIV , Estudos Transversais , Reprodutibilidade dos Testes , Capacidade de Difusão Pulmonar , Pulmão
3.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895019

RESUMO

The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.


Assuntos
Células-Tronco Neurais , Esquizofrenia , Humanos , Conchas Nasais/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células Cultivadas , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo
4.
J Lipid Res ; 63(4): 100185, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202607

RESUMO

The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor ß activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.


Assuntos
Remodelação das Vias Aéreas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Estresse Oxidativo , Fumaça , Animais , Epitélio/metabolismo , Glutationa/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/metabolismo , Camundongos , Proteômica , Fumaça/efeitos adversos
5.
Am J Physiol Cell Physiol ; 320(1): C119-C131, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085496

RESUMO

The well-described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as in regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases (CLDs) including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor cells (MVPCs), microvascular endothelial cells (MVECs), and smooth muscle cells (SMCs) within the microvascular niche have not been elucidated. In this study, we show that knockdown of DKK1 in Abcg2pos lung mouse adult tissue resident MVPCs alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure. To complement the in vivo mouse modeling, we also identified cell- or disease-specific responses to DKK1, in primary lung chronic obstructive pulmonary disease (COPD) MVPCs, COPD MVECs, and SMCs, supporting a paradoxical disease-specific response of cells to well-characterized factors. Cell responses to DKK1 were dose dependent and correlated with varying expressions of the DKK1 receptor, CKAP4. These data demonstrate that DKK1 expression is necessary to maintain the microvascular niche whereas its effects are context specific. They also highlight DKK1 as a regulatory candidate to understand the role of Wnt and DKK1 signaling between cells of the microvascular niche during tissue homeostasis and during the development of chronic lung diseases.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/irrigação sanguínea , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Nicho de Células-Tronco , Via de Sinalização Wnt , beta Catenina/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Hipóxia Celular , Linhagem da Célula , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fenótipo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Remodelação Vascular , beta Catenina/genética
6.
FASEB J ; 34(8): 10267-10285, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32533805

RESUMO

Adaptive angiogenesis is necessary for tissue repair, however, it may also be associated with the exacerbation of injury and development of chronic disease. In these studies, we demonstrate that lung mesenchymal vascular progenitor cells (MVPC) modulate adaptive angiogenesis via lineage trace, depletion of MVPC, and modulation of ß-catenin expression. Single cell sequencing confirmed MVPC as multipotential vascular progenitors, thus, genetic depletion resulted in alveolar simplification with reduced adaptive angiogenesis. Following vascular endothelial injury, Wnt activation in MVPC was sufficient to elicit an emphysema-like phenotype characterized by increased MLI, fibrosis, and MVPC driven adaptive angiogenesis. Lastly, activation of Wnt/ß-catenin signaling skewed the profile of human and murine MVPC toward an adaptive phenotype. These data suggest that lung MVPC drive angiogenesis in response to injury and regulate the microvascular niche as well as subsequent distal lung tissue architecture via Wnt signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Idoso , Animais , Linhagem Celular , Endotélio Vascular/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Adulto Jovem , beta Catenina/metabolismo
7.
Medicina (Kaunas) ; 57(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34684107

RESUMO

Background and Objectives: This study aimed to identify demographic and clinical factors at the time of critical care consultation associated with mortality or intensive care unit acceptance in a predominantly Afro-Caribbean population during the first wave of the COVID19 pandemic. Materials and Methods: This retrospective, single-center observational cohort study included 271 COVID19 patients who received a critical care consult between March 11 and April 30, 2020 during the first wave of the COVID19 pandemic at State University of New York Downstate Health Sciences University. Results: Of the 271 patients with critical care consults, 33% survived and 67% expired. At the bivariate level, age, blood urea nitrogen, and blood neutrophil percentage were significantly associated with mortality (mean age: survivors, 61.62 ± 1.50 vs. non-survivors, 68.98 ± 0.85, p < 0.001). There was also a significant association between neutrophil% and mortality in the univariate logistic regression model (quartile 4 vs. quartile 1: odd ratio 2.73, 95% confidence interval (1.28-5.82), p trend = 0.044). In the multivariate analyses, increasing levels of procalcitonin and C-reactive protein were significantly associated with mortality, adjusting for age, sex, and race/ethnicity (for procalcitonin quartile 4 vs. quartile 1: odds ratio 5.65, 95% confidence interval (2.14-14.9), p trend < 0.001). In contrast, higher platelet levels correlated with significantly decreased odds of mortality (quartile 4 vs. quartile 1, odds ratio 0.47, 95% CI (0.22-0.998), p trend = 0.010). Of these factors, only elevated procalcitonin levels were associated with intensive care unit acceptance. Conclusions: Procalcitonin showed the greatest magnitude of association with both death and likelihood of intensive care unit acceptance at the bivariate level. Our data suggests that procalcitonin reflects pneumonia severity during COVID-19 infection. Thus, it may help the intensivist identify those COVID19 patients who require intensive care unit level care.


Assuntos
COVID-19 , Pró-Calcitonina , Idoso , Humanos , Unidades de Terapia Intensiva , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
8.
Am J Respir Cell Mol Biol ; 62(5): 598-607, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31801023

RESUMO

Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown. To ascertain these factors, analyses were conducted using human airway epithelial cells isolated from healthy subjects and human subjects with COPD and lung tissue from control and cigarette smoke-exposed A/J mice. Tyrosine phosphorylation modifies GPX-1 expression and cigarette smoke activates the tyrosine kinase c-Src. Therefore, studies were conducted to evaluate the role of c-Src on GPX-1 levels in COPD. These studies identified accelerated GPX-1 mRNA decay in COPD airway epithelial cells. Targeting the tyrosine kinase c-Src with siRNA inhibited GPX-1 mRNA degradation and restored GPX-1 protein levels in human airway epithelial cells. In contrast, silencing the tyrosine kinase c-Abl, or the transcriptional activator Nrf2, had no effect on GPX-1 mRNA stability. The chemical inhibitors for c-Src (saracatinib and dasanitib) restored GPX-1 mRNA levels and GPX-1 activity in COPD airway cells in vitro. Similarly, saracatinib prevented the loss of lung Gpx-1 expression in response to chronic smoke exposure in vivo. Thus, this study establishes that the decreased GPX-1 expression that occurs in COPD lungs is at least partially due to accelerated mRNA decay. Furthermore, these findings show that targeting c-Src represents a potential therapeutic approach to augment GPX-1 responses and counter smoke-induced lung disease.


Assuntos
Células Epiteliais/metabolismo , Glutationa Peroxidase/genética , Pulmão/patologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Estabilidade de RNA/genética , Animais , Benzodioxóis/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Camundongos , Quinazolinas/farmacologia , Fumar/efeitos adversos , Glutationa Peroxidase GPX1
9.
Am J Respir Cell Mol Biol ; 62(3): 342-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31517509

RESUMO

Sphingomyelin synthase is responsible for the production of sphingomyelin (SGM), the second most abundant phospholipid in mammalian plasma, from ceramide, a major sphingolipid. Knowledge of the effects of cigarette smoke on SGM production is limited. In the present study, we examined the effect of chronic cigarette smoke on sphingomyelin synthase (SGMS) activity and evaluated how the deficiency of Sgms2, one of the two isoforms of mammalian SGMS, impacts pulmonary function. Sgms2-knockout and wild-type control mice were exposed to cigarette smoke for 6 months, and pulmonary function testing was performed. SGMS2-dependent signaling was investigated in these mice and in human monocyte-derived macrophages of nonsmokers and human bronchial epithelial (HBE) cells isolated from healthy nonsmokers and subjects with chronic obstructive pulmonary disease (COPD). Chronic cigarette smoke reduces SGMS activity and Sgms2 gene expression in mouse lungs. Sgms2-deficient mice exhibited enhanced airway and tissue resistance after chronic cigarette smoke exposure, but had similar degrees of emphysema, compared with smoke-exposed wild-type mice. Sgms2-/- mice had greater AKT phosphorylation, peribronchial collagen deposition, and protease activity in their lungs after smoke inhalation. Similarly, we identified reduced SGMS2 expression and enhanced phosphorylation of AKT and protease production in HBE cells isolated from subjects with COPD. Selective inhibition of AKT activity or overexpression of SGMS2 reduced the production of several matrix metalloproteinases in HBE cells and monocyte-derived macrophages. Our study demonstrates that smoke-regulated Sgms2 gene expression influences key COPD features in mice, including airway resistance, AKT signaling, and protease production.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Animais , Brônquios/citologia , Células Cultivadas , Ceramidas/metabolismo , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Metaloproteinases da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Esfingomielinas/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
10.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L1021-L1035, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964723

RESUMO

S100 calcium-binding protein A9 (S100A9) is elevated in plasma and bronchoalveolar lavage fluid (BALF) of patients with chronic obstructive pulmonary disease (COPD), and aging enhances S100A9 expression in several tissues. Currently, the direct impact of S100A9-mediated signaling on lung function and within the aging lung is unknown. Here, we observed that elevated S100A9 levels in human BALF correlated with age. Elevated lung levels of S100A9 were higher in older mice compared with in young animals and coincided with pulmonary function changes. Both acute and chronic exposure to cigarette smoke enhanced S100A9 levels in age-matched mice. To examine the direct role of S100A9 on the development of COPD, S100a9-/- mice or mice administered paquinimod were exposed to chronic cigarette smoke. S100A9 depletion and inhibition attenuated the loss of lung function, pressure-volume loops, airway inflammation, lung compliance, and forced expiratory volume in 0.05 s/forced vital capacity, compared with age-matched wild-type or vehicle-administered animals. Loss of S100a9 signaling reduced cigarette smoke-induced airspace enlargement, alveolar remodeling, lung destruction, ERK and c-RAF phosphorylation, matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and keratinocyte-derived chemokine (KC) release into the airways. Paquinimod administered to nonsmoked, aged animals reduced age-associated loss of lung function. Since fibroblasts play a major role in the production and maintenance of extracellular matrix in emphysema, primary lung fibroblasts were treated with the ERK inhibitor LY3214996 or the c-RAF inhibitor GW5074, resulting in less S100A9-induced MMP-3, MMP-9, MCP-1, IL-6, and IL-8. Silencing Toll-like receptor 4 (TLR4), receptor for advanced glycation endproducts (RAGE), or extracellular matrix metalloproteinase inducer (EMMPRIN) prevented S100A9-induced phosphorylation of ERK and c-RAF. Our data suggest that S100A9 signaling contributes to the progression of smoke-induced and age-related COPD.


Assuntos
Calgranulina B/metabolismo , Mediadores da Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça/efeitos adversos , Animais , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Capacidade Vital/fisiologia
11.
Am J Respir Crit Care Med ; 200(1): 51-62, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641028

RESUMO

Rationale: CTSS (cathepsin S) is a cysteine protease that is observed at higher concentrations in BAL fluid and plasma of subjects with chronic obstructive pulmonary disease (COPD). Objectives: To investigate whether CTSS is involved in the pathogenesis of cigarette smoke-induced COPD and determine whether targeting upstream signaling could prevent the disease. Methods: CTSS expression was investigated in animal and human tissue and cell models of COPD. Ctss-/- mice were exposed to long-term cigarette smoke and forced oscillation and expiratory measurements were recorded. Animals were administered chemical modulators of PP2A (protein phosphatase 2A) activity. Measurements and Main Results: Here we observed enhanced CTSS expression and activity in mouse lungs after exposure to cigarette smoke. Ctss-/- mice were resistant to cigarette smoke-induced inflammation, airway hyperresponsiveness, airspace enlargements, and loss of lung function. CTSS expression was negatively regulated by PP2A in human bronchial epithelial cells isolated from healthy nonsmokers and COPD donors and in monocyte-derived macrophages. Modulating PP2A expression or activity, with silencer siRNA or a chemical inhibitor or activator, during acute smoke exposure in mice altered inflammatory responses and CTSS expression and activity in the lung. Enhancement of PP2A activity prevented chronic smoke-induced COPD in mice. Conclusions: Our study indicates that the decrease in PP2A activity that occurs in COPD contributes to elevated CTSS expression in the lungs and results in impaired lung function. Enhancing PP2A activity represents a feasible therapeutic approach to reduce CTSS activity and counter smoke-induced lung disease.


Assuntos
Catepsinas/metabolismo , Fumar Cigarros/metabolismo , Pulmão/metabolismo , Nicotiana , Proteína Fosfatase 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Animais , Brônquios/citologia , Estudos de Casos e Controles , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Humanos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Ácido Okadáico/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Mucosa Respiratória/citologia
12.
Eur Respir J ; 53(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30464018

RESUMO

There is a marked increase in the development and use of electronic nicotine delivery systems or electronic cigarettes (ECIGs). This statement covers electronic cigarettes (ECIGs), defined as "electrical devices that generate an aerosol from a liquid" and thus excludes devices that contain tobacco. Database searches identified published articles that were used to summarise the current knowledge on the epidemiology of ECIG use; their ingredients and accompanied health effects; second-hand exposure; use of ECIGs for smoking cessation; behavioural aspects of ECIGs and social impact; in vitro and animal studies; and user perspectives.ECIG aerosol contains potentially toxic chemicals. As compared to conventional cigarettes, these are fewer and generally in lower concentrations. Second-hand exposures to ECIG chemicals may represent a potential risk, especially to vulnerable populations. There is not enough scientific evidence to support ECIGs as an aid to smoking cessation due to a lack of controlled trials, including those that compare ECIGs with licenced stop-smoking treatments. So far, there are conflicting data that use of ECIGs results in a renormalisation of smoking behaviour or for the gateway hypothesis. Experiments in cell cultures and animal studies show that ECIGs can have multiple negative effects. The long-term effects of ECIG use are unknown, and there is therefore no evidence that ECIGs are safer than tobacco in the long term. Based on current knowledge, negative health effects cannot be ruled out.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Pneumologia/normas , Abandono do Hábito de Fumar/métodos , Tabagismo/terapia , Adolescente , Adulto , Animais , Caenorhabditis elegans , Células Epiteliais/efeitos dos fármacos , Europa (Continente)/epidemiologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Pneumologia/organização & administração , Ratos , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Vaping , Adulto Jovem , Peixe-Zebra
13.
Am J Respir Cell Mol Biol ; 59(6): 695-705, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30011381

RESUMO

Phosphatase activity of the major serine threonine phosphatase, protein phosphatase 2A (PP2A), is blunted in the airways of individuals with chronic obstructive pulmonary disease (COPD), which results in heightened inflammation and proteolytic responses. The objective of this study was to investigate how PP2A activity is modulated in COPD airways. PP2A activity and endogenous inhibitors of PP2A were investigated in animal and cell models of COPD. In primary human bronchial epithelial (HBE) cells isolated from smokers and donors with COPD, we observed enhanced expression of cancerous inhibitor of PP2A (CIP2A), an oncoprotein encoded by the KIAA1524 gene, compared with cells from nonsmokers. CIP2A expression was induced by chronic cigarette smoke exposure in mice that coincided with a reduction in PP2A activity, airspace enlargements, and loss of lung function, as determined by PP2A phosphatase activity, mean linear intercept analysis, and forced expiratory volume in 0.05 second/forced vital capacity. Modulating CIP2A expression in HBE cells by silencing RNA or chemically with erlotinib enhanced PP2A activity, reduced extracellular-signal-regulated kinase phosphorylation, and reduced the responses of matrix metalloproteinases 1 and 9 in HBE cells isolated from subjects with COPD. Enhanced epithelial growth factor receptor responses in cells from subjects with COPD were observed to modulate CIP2A expression levels. Our study indicates that chronic cigarette smoke induction of epithelial growth factor receptor signaling and CIP2A expression can impair PP2A responses that are associated with loss of lung function and enhancement of proteolytic responses. Augmenting PP2A activity by manipulating CIP2A expression may represent a feasible therapeutic approach to counter smoke-induced lung disease.


Assuntos
Autoantígenos/metabolismo , Fumar Cigarros/efeitos adversos , Exposição Ambiental/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/metabolismo , Proteólise , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia
14.
Thorax ; 73(12): 1161-1169, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30104262

RESUMO

OBJECTIVE: Vaping may increase the cytotoxic effects of e-cigarette liquid (ECL). We compared the effect of unvaped ECL to e-cigarette vapour condensate (ECVC) on alveolar macrophage (AM) function. METHODS: AMs were treated with ECVC and nicotine-free ECVC (nfECVC). AM viability, apoptosis, necrosis, cytokine, chemokine and protease release, reactive oxygen species (ROS) release and bacterial phagocytosis were assessed. RESULTS: Macrophage culture with ECL or ECVC resulted in a dose-dependent reduction in cell viability. ECVC was cytotoxic at lower concentrations than ECL and resulted in increased apoptosis and necrosis. nfECVC resulted in less cytotoxicity and apoptosis. Exposure of AMs to a sub-lethal 0.5% ECVC/nfECVC increased ROS production approximately 50-fold and significantly inhibited phagocytosis. Pan and class one isoform phosphoinositide 3 kinase inhibitors partially inhibited the effects of ECVC/nfECVC on macrophage viability and apoptosis. Secretion of interleukin 6, tumour necrosis factor α, CXCL-8, monocyte chemoattractant protein 1 and matrix metalloproteinase 9 was significantly increased following ECVC challenge. Treatment with the anti-oxidant N-acetyl-cysteine (NAC) ameliorated the cytotoxic effects of ECVC/nfECVC to levels not significantly different from baseline and restored phagocytic function. CONCLUSIONS: ECVC is significantly more toxic to AMs than non-vaped ECL. Excessive production of ROS, inflammatory cytokines and chemokines induced by e-cigarette vapour may induce an inflammatory state in AMs within the lung that is partly dependent on nicotine. Inhibition of phagocytosis also suggests users may suffer from impaired bacterial clearance. While further research is needed to fully understand the effects of e-cigarette exposure in humans in vivo, we caution against the widely held opinion that e-cigarettes are safe.


Assuntos
Misturas Complexas/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Gases/efeitos adversos , Macrófagos Alveolares/patologia , Macrófagos Alveolares/fisiologia , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Necrose/etiologia , Nicotina/efeitos adversos , Fagocitose/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Vaping/efeitos adversos
15.
PLoS Genet ; 11(1): e1004898, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569234

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Regiões Promotoras Genéticas , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Transdução de Sinais , Fumar/efeitos adversos
16.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L500-L509, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104604

RESUMO

Cigarette smoke usage is prevalent in human immunodeficiency virus (HIV)-positive patients, and, despite highly active antiretroviral therapy, these individuals develop an accelerated form of chronic obstructive pulmonary disease (COPD). Studies investigating the mechanisms of COPD development in HIV have been limited by the lack of suitable mouse models. Here we describe a model of HIV-induced COPD in wild-type mice using EcoHIV, a chimeric HIV capable of establishing chronic infection in immunocompetent mice. A/J mice were infected with EcoHIV and subjected to whole body cigarette smoke exposure. EcoHIV was detected in alveolar macrophages of mice. Compared with uninfected mice, concomitant EcoHIV infection significantly reduced forced expiratory flow 50%/forced vital capacity and enhanced distal airspace enlargement following cigarette smoke exposure. Lung IL-6, granulocyte-macrophage colony-stimulating factor, neutrophil elastase, cathepsin G, and matrix metalloproteinase-9 expression was significantly enhanced in smoke-exposed EcoHIV-infected mice. These changes coincided with enhanced IκBα, ERK1/2, p38, and STAT3 phosphorylation and lung cell apoptosis. Thus, the EcoHIV smoke exposure mouse model reproduces several of the pathophysiological features of HIV-related COPD in humans, indicating that this murine model can be used to determine key parameters of HIV-related COPD and to test future therapies for this disorder.


Assuntos
Infecções por HIV/complicações , Doença Pulmonar Obstrutiva Crônica/complicações , Animais , Apoptose , Modelos Animais de Doenças , Humanos , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Camundongos , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Pneumonia/patologia , Fumar/efeitos adversos
17.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L154-66, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288485

RESUMO

The expression of Toll-like receptor (TLR)-9, a pathogen recognition receptor that recognizes unmethylated CpG sequences in microbial DNA molecules, is linked to the pathogenesis of several lung diseases. TLR9 expression and signaling was investigated in animal and cell models of chronic obstructive pulmonary disease (COPD). We observed enhanced TLR9 expression in mouse lungs following exposure to cigarette smoke. Tlr9(-/-) mice were resistant to cigarette smoke-induced loss of lung function as determined by mean linear intercept, total lung capacity, lung compliance, and tissue elastance analysis. Tlr9 expression also regulated smoke-mediated immune cell recruitment to the lung; apoptosis; expression of granulocyte-colony stimulating factor (G-CSF), the CXCL5 protein, and matrix metalloproteinase-2 (MMP-2); and protein tyrosine phosphatase 1B (PTP1B) activity in the lung. PTP1B, a phosphatase with anti-inflammatory abilities, was identified as binding to TLR9. In vivo delivery of a TLR9 agonist enhanced TLR9 binding to PTP1B, which inactivated PTP1B. Ptp1b(-/-) mice had elevated lung concentrations of G-CSF, CXCL5, and MMP-2, and tissue expression of type-1 interferon following TLR9 agonist administration, compared with wild-type mice. TLR9 responses were further determined in fully differentiated normal human bronchial epithelial (NHBE) cells isolated from nonsmoker, smoker, and COPD donors, and then cultured at air liquid interface. NHBE cells from smokers and patients with COPD expressed more TLR9 and secreted greater levels of G-CSF, IL-6, CXCL5, IL-1ß, and MMP-2 upon TLR9 ligand stimulation compared with cells from nonsmoker donors. Although TLR9 combats infection, our results indicate that TLR9 induction can affect lung function by inactivating PTP1B and upregulating expression of proinflammatory cytokines.


Assuntos
Pulmão/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Receptor Toll-Like 9/genética , Adulto , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Feminino , Expressão Gênica , Humanos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Fumar/efeitos adversos , Receptor Toll-Like 9/biossíntese , Regulação para Cima , Adulto Jovem
18.
Thorax ; 71(12): 1119-1129, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27558745

RESUMO

BACKGROUND: The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. METHODS: Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. RESULTS: Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. CONCLUSIONS: Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Nicotina/toxicidade , Doença Pulmonar Obstrutiva Crônica/etiologia , Tabagismo/complicações , Administração por Inalação , Adulto , Animais , Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/fisiologia , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Cloreto de Metacolina , Camundongos Endogâmicos A , Pessoa de Meia-Idade , Mucinas/biossíntese , Nicotina/administração & dosagem , Nicotina/farmacologia , Peptídeo Hidrolases/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
19.
Mediators Inflamm ; 2016: 9461289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070146

RESUMO

Oxidative stress provokes endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the lungs of chronic obstructive pulmonary (COPD) subjects. The antioxidant, glutathione peroxidase-1 (GPx-1), counters oxidative stress induced by cigarette smoke exposure. Here, we investigate whether GPx-1 expression deters the UPR following exposure to cigarette smoke. Expression of ER stress markers was investigated in fully differentiated normal human bronchial epithelial (NHBE) cells isolated from nonsmoking, smoking, and COPD donors and redifferentiated at the air liquid interface. NHBE cells from COPD donors expressed heightened ATF4, XBP1, GRP78, GRP94, EDEM1, and CHOP compared to cells from nonsmoking donors. These changes coincided with reduced GPx-1 expression. Reintroduction of GPx-1 into NHBE cells isolated from COPD donors reduced the UPR. To determine whether the loss of GPx-1 expression has a direct impact on these ER stress markers during smoke exposure, Gpx-1-/- mice were exposed to cigarette smoke for 1 year. Loss of Gpx-1 expression enhanced cigarette smoke-induced ER stress and apoptosis. Equally, induction of ER stress with tunicamycin enhanced antioxidant expression in mouse precision-cut lung slices. Smoke inhalation also exacerbated the UPR response during respiratory syncytial virus infection. Therefore, ER stress may be an antioxidant-related pathophysiological event in COPD.


Assuntos
Regulação da Expressão Gênica , Glutationa Peroxidase/fisiologia , Fumar , Resposta a Proteínas não Dobradas , Adulto , Animais , Antioxidantes/química , Apoptose , Brônquios/citologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Epiteliais , Feminino , Glutationa Peroxidase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Fumaça , Produtos do Tabaco , Tunicamicina/química , Adulto Jovem , Glutationa Peroxidase GPX1
20.
FASEB J ; 28(5): 2318-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532668

RESUMO

Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1ß, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.


Assuntos
Catepsina G/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Pneumonia/metabolismo , Idoso , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/química , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA