Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 630(8018): 836-840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768634

RESUMO

Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions1. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly H2O (ref. 2). In this work, we present the panchromatic transmission spectrum of the approximately 750 K, low-density, Neptune-sized exoplanet WASP-107b using a combination of HST Wide Field Camera 3 (WFC3) and JWST Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). From this spectrum, we detect spectroscopic features resulting from H2O (21σ), CH4 (5σ), CO (7σ), CO2 (29σ), SO2 (9σ) and NH3 (6σ). The presence of these molecules enables constraints on the atmospheric metal enrichment (M/H is 10-18× solar3), vertical mixing strength (log10Kzz = 8.4-9.0 cm2 s-1) and internal temperature (>345 K). The high internal temperature is suggestive of tidally driven inflation4 acting on a Neptune-like internal structure, which can naturally explain the large radius and low density of the planet. These findings suggest that eccentricity-driven tidal heating is a critical process governing atmospheric chemistry and interior-structure inferences for most of the cool (<1,000 K) super-Earth-to-Saturn-mass exoplanet population.

2.
Nature ; 618(7963): 39-42, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972683

RESUMO

The TRAPPIST-1 system is remarkable for its seven planets that are similar in size, mass, density and stellar heating to the rocky planets Venus, Earth and Mars in the Solar System1. All the TRAPPIST-1 planets have been observed with transmission spectroscopy using the Hubble or Spitzer space telescopes, but no atmospheric features have been detected or strongly constrained2-5. TRAPPIST-1 b is the closest planet to the M-dwarf star of the system, and it receives four times as much radiation as Earth receives from the Sun. This relatively large amount of stellar heating suggests that its thermal emission may be measurable. Here we present photometric secondary eclipse observations of the Earth-sized exoplanet TRAPPIST-1 b using the F1500W filter of the mid-infrared instrument on the James Webb Space Telescope (JWST). We detect the secondary eclipses in five separate observations with 8.7σ confidence when all data are combined. These measurements are most consistent with re-radiation of the incident flux of the TRAPPIST-1 star from only the dayside hemisphere of the planet. The most straightforward interpretation is that there is little or no planetary atmosphere redistributing radiation from the host star and also no detectable atmospheric absorption of carbon dioxide (CO2) or other species.

3.
Nature ; 623(7988): 709-712, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993572

RESUMO

The abundances of main carbon- and oxygen-bearing gases in the atmospheres of giant exoplanets provide insights into atmospheric chemistry and planet formation processes1,2. Thermochemistry suggests that methane (CH4) should be the dominant carbon-bearing species below about 1,000 K over a range of plausible atmospheric compositions3; this is the case for the solar system planets4 and has been confirmed in the atmospheres of brown dwarfs and self-luminous, directly imaged exoplanets5. However, CH4 has not yet been definitively detected with space-based spectroscopy in the atmosphere of a transiting exoplanet6-11, but a few detections have been made with ground-based, high-resolution transit spectroscopy12,13 including a tentative detection for WASP-80b (ref. 14). Here we report transmission and emission spectra spanning 2.4-4.0 µm of the 825 K warm Jupiter WASP-80b taken with the NIRCam instrument of the JWST, both of which show strong evidence of CH4 at greater than 6σ significance. The derived CH4 abundances from both viewing geometries are consistent with each other and with solar to sub-solar C/O and around five times solar metallicity, which is consistent with theoretical predictions15-17.

4.
Nature ; 614(7949): 670-675, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623550

RESUMO

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 µm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.

5.
Nature ; 617(7961): 483-487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100917

RESUMO

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 µm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-µm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

6.
Nature ; 598(7882): 580-584, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34707303

RESUMO

Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration1,2. Hot Jupiters that form beyond the major volatile (H2O/CO/CO2) ice lines and subsequently migrate post disk-dissipation are predicted have atmospheric carbon-to-oxygen ratios (C/O) near 1 and subsolar metallicities2, whereas planets that migrate through the disk before dissipation are predicted to be heavily polluted by infalling O-rich icy planetesimals, resulting in C/O < 0.5 and super-solar metallicities1,2. Previous observations of hot Jupiters have been able to provide bounded constraints on either H2O (refs. 3-5) or CO (refs. 6,7), but not both for the same planet, leaving uncertain4 the true elemental C and O inventory and subsequent C/O and metallicity determinations. Here we report spectroscopic observations of a typical transiting hot Jupiter, WASP-77Ab. From these, we determine the atmospheric gas volume mixing ratio constraints on both H2O and CO (9.5 × 10-5-1.5 × 10-4 and 1.2 × 10-4-2.6 × 10-4, respectively). From these bounded constraints, we are able to derive the atmospheric C/H ([Formula: see text] × solar) and O/H ([Formula: see text] × solar) abundances and the corresponding atmospheric carbon-to-oxygen ratio (C/O = 0.59 ± 0.08; the solar value is 0.55). The sub-solar (C+O)/H ([Formula: see text] × solar) is suggestive of a metal-depleted atmosphere relative to what is expected for Jovian-like planets1 while the near solar value of C/O rules out the disk-free migration/C-rich2 atmosphere scenario.

7.
Proc Natl Acad Sci U S A ; 119(14): e2117933119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35353627

RESUMO

Methane has been proposed as an exoplanet biosignature. Imminent observations with the James Webb Space Telescope may enable methane detections on potentially habitable exoplanets, so it is essential to assess in what planetary contexts methane is a compelling biosignature. Methane's short photochemical lifetime in terrestrial planet atmospheres implies that abundant methane requires large replenishment fluxes. While methane can be produced by a variety of abiotic mechanisms such as outgassing, serpentinizing reactions, and impacts, we argue that­in contrast to an Earth-like biosphere­known abiotic processes cannot easily generate atmospheres rich in CH4 and CO2 with limited CO due to the strong redox disequilibrium between CH4 and CO2. Methane is thus more likely to be biogenic for planets with 1) a terrestrial bulk density, high mean-molecular-weight and anoxic atmosphere, and an old host star; 2) an abundance of CH4 that implies surface fluxes exceeding what could be supplied by abiotic processes; and 3) atmospheric CO2 with comparatively little CO.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Atmosfera , Planeta Terra , Exobiologia/métodos , Metano , Planetas
9.
Nature ; 529(7584): 59-62, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675732

RESUMO

Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Planetas , Água/análise , Júpiter , Pressão , Espectrofotometria Infravermelho , Telescópios , Temperatura
10.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190474, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161856

RESUMO

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets' internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

11.
Nature ; 503(7476): 381-4, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24172898

RESUMO

Planets with sizes between that of Earth (with radius R Earth symbol) and Neptune (about 4R Earth symbol) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass--and hence its density, which is a clue to its composition--is more difficult. Planets of size 2-4R Earth symbol have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R Earth symbol and a mass of 1.69 ± 0.41 R Earth symbol, the planet's mean density of 5.3 ± 1.8 g cm(-3) is similar to Earth's, suggesting a composition of rock and iron.

12.
Nature ; 494(7438): 452-4, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23426260

RESUMO

Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

13.
Nature ; 487(7408): 449-53, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836999

RESUMO

The Sun's equator and the planets' orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion , magnetic interactions or torques from neighbouring stars. Indeed, isolated 'hot Jupiters' are often misaligned and even orbiting retrograde. Here we report an analysis of transits of planets over starspots on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star-disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.

14.
Nature ; 481(7382): 475-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237021

RESUMO

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.


Assuntos
Planetas , Meio Ambiente Extraterreno/química , Voo Espacial , Astronave , Astros Celestes
15.
Nature ; 470(7332): 53-8, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293371

RESUMO

When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.

16.
Proc Natl Acad Sci U S A ; 111(35): 12622-7, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-24379369

RESUMO

The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth.


Assuntos
Planeta Terra , Exobiologia , Meio Ambiente Extraterreno , Júpiter , Netuno , Oceanos e Mares , Modelos Teóricos
17.
Proc Natl Acad Sci U S A ; 111(25): 9042-7, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24876272

RESUMO

High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 µm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

18.
Nature ; 463(7284): 1054-6, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20182506

RESUMO

The class of exotic Jupiter-mass planets that orbit very close to their parent stars were not explicitly expected before their discovery. The recently discovered transiting planet WASP-12b has a mass M = 1.4 +/- 0.1 Jupiter masses (M(J)), a mean orbital distance of only 3.1 stellar radii (meaning it is subject to intense tidal forces), and a period of 1.1 days. Its radius 1.79 +/- 0.09R(J) is unexpectedly large and its orbital eccentricity 0.049 +/- 0.015 is even more surprising because such close orbits are usually quickly circularized. Here we report an analysis of its properties, which reveals that the planet is losing mass to its host star at a rate of about 10(-7)M(J) per year. The planet's surface is distorted by the star's gravity and the light curve produced by its prolate shape will differ by about ten per cent from that of a spherical planet. We conclude that dissipation of the star's tidal perturbation in the planet's convective envelope provides the energy source for its large volume. We predict up to 10 mJy CO band-head (2.292 mum) emission from a tenuous disk around the host star, made up of tidally stripped planetary gas. It may also contain a detectable resonant super-Earth, as a hypothetical perturber that continually stirs up WASP-12b's eccentricity.

19.
Nature ; 447(7141): 183-6, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17495920

RESUMO

'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

20.
Science ; 356(6338): 628-631, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495748

RESUMO

A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA