Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483355

RESUMO

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Assuntos
Mycobacterium tuberculosis , Fibrose Pulmonar , Tuberculose , Animais , Ecossistema , Granuloma , Pulmão , Macaca fascicularis , Fibrose Pulmonar/patologia
2.
Cell ; 167(2): 433-443.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667685

RESUMO

While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Adulto , Feminino , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Ativação de Macrófagos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/imunologia , Análise Serial de Proteínas , Receptores de IgG/imunologia , Adulto Jovem
3.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
4.
J Biol Chem ; 299(11): 105312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802316

RESUMO

The mechanisms and regulation of RNA degradation in mycobacteria have been subject to increased interest following the identification of interplay between RNA metabolism and drug resistance. Mycobacteria encode multiple ribonucleases predicted to participate in mRNA degradation and/or processing of stable RNAs. RNase E is hypothesized to play a major role in mRNA degradation because of its essentiality in mycobacteria and its role in mRNA degradation in gram-negative bacteria. Here, we defined the impact of RNase E on mRNA degradation rates transcriptome-wide in the nonpathogenic model Mycolicibacterium smegmatis. RNase E played a rate-limiting role in degradation of the transcripts encoded by at least 89% of protein-coding genes, with leadered transcripts often being more affected by RNase E repression than leaderless transcripts. There was an apparent global slowing of transcription in response to knockdown of RNase E, suggesting that M. smegmatis regulates transcription in responses to changes in mRNA degradation. This compensation was incomplete, as the abundance of most transcripts increased upon RNase E knockdown. We assessed the sequence preferences for cleavage by RNase E transcriptome-wide in M. smegmatis and Mycobacterium tuberculosis and found a consistent bias for cleavage in C-rich regions. Purified RNase E had a clear preference for cleavage immediately upstream of cytidines, distinct from the sequence preferences of RNase E in gram-negative bacteria. We furthermore report a high-resolution map of mRNA cleavage sites in M. tuberculosis, which occur primarily within the RNase E-preferred sequence context, confirming that RNase E has a broad impact on the M. tuberculosis transcriptome.


Assuntos
Mycobacterium smegmatis , RNA Mensageiro , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/metabolismo , RNA Bacteriano/metabolismo
5.
Infect Immun ; 92(4): e0053523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38514467

RESUMO

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection . Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, positron emission tomography-computed tomography (PET CT) imaging, flow cytometry, and cytokine profiling, we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination, or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the seven antibiotic-treated animals demonstrated sterilizing immunity against reinfection, while four of the seven non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic-treated macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Reinfecção , Tuberculose/tratamento farmacológico , Macaca fascicularis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Mol Microbiol ; 119(2): 208-223, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416406

RESUMO

The growth of mycobacterial cells requires successful coordination between elongation and septation. However, it is not clear which factors mediate this coordination. Here, we studied the function and post-translational modification of an essential division factor, SepIVA, in Mycobacterium smegmatis. We find that SepIVA is arginine methylated, and that alteration of its methylation sites affects both septation and polar elongation of Msmeg. Furthermore, we show that SepIVA regulates the localization of MurG and that this regulation may impact polar elongation. Finally, we map SepIVA's two regulatory functions to different ends of the protein: the N-terminus regulates elongation while the C-terminus regulates division. These results establish SepIVA as a regulator of both elongation and division and characterize a physiological role for protein arginine methylation sites for the first time in mycobacteria.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Divisão Celular , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/metabolismo , Metilação , Citocinese
7.
PLoS Pathog ; 18(7): e1010705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35830479

RESUMO

Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.


Assuntos
Mycobacterium tuberculosis , Ribonucleases , Tolerância a Medicamentos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
8.
BMC Genomics ; 23(1): 647, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096729

RESUMO

BACKGROUND: Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT: We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION: The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.


Assuntos
Genoma , Mycobacterium tuberculosis , Animais , Genômica , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Mycobacterium tuberculosis/genética
9.
PLoS Pathog ; 16(7): e1008413, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730321

RESUMO

Human immunodeficiency virus infection is the most common risk factor for severe forms of tuberculosis (TB), regardless of CD4 T cell count. Using a well-characterized cynomolgus macaque model of human TB, we compared radiographic, immunologic and microbiologic characteristics of early (subclinical) reactivation of latent M. tuberculosis (Mtb) infection among animals subsequently infected with simian immunodeficiency virus (SIV) or who underwent anti-CD4 depletion by a depletion antibody. CD4 depleted animals had significantly fewer CD4 T cells within granulomas compared to Mtb/SIV co-infected and Mtb-only control animals. After 2 months of treatment, subclinical reactivation occurred at similar rates among CD4 depleted (5 of 7 animals) and SIV infected animals (4 of 8 animals). However, SIV-induced reactivation was associated with more dissemination of lung granulomas that were permissive to Mtb growth resulting in greater bacterial burden within granulomas compared to CD4 depleted reactivators. Granulomas from Mtb/SIV animals displayed a more robust T cell activation profile (IFN-α, IFN-γ, TNF, IL-17, IL-2, IL-10, IL-4 and granzyme B) compared to CD4 depleted animals and controls though these effectors did not protect against reactivation or dissemination, but instead may be related to increased viral and/or Mtb antigens. SIV replication within the granuloma was associated with reactivation, greater overall Mtb growth and reduced Mtb killing resulting in greater overall Mtb burden. These data support that SIV disrupts protective immune responses against latent Mtb infection beyond the loss of CD4 T cells, and that synergy between SIV and Mtb occurs within granulomas.


Assuntos
Coinfecção/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Ativação Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Granuloma/virologia , Hospedeiro Imunocomprometido/imunologia , Macaca fascicularis , Mycobacterium tuberculosis/imunologia , Vírus da Imunodeficiência Símia/imunologia
10.
PLoS Pathog ; 16(10): e1009000, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075106

RESUMO

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this "decoy hypothesis". Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Animais , Antígenos de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
11.
PLoS Pathog ; 16(11): e1009063, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253310

RESUMO

Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana Múltipla , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Replicação do DNA , Estudo de Associação Genômica Ampla , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico
13.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33229461

RESUMO

The ClpP1P2 proteolytic complex is essential in Mycobacterium tuberculosis Proteolysis by ClpP1P2 requires an associated ATPase, either ClpX or ClpC1. Here, we sought to define the unique contributions of the ClpX ATPase to mycobacterial growth. We formally demonstrated that ClpX is essential for mycobacterial growth, and to understand its essential functions, we identified ClpX-His-interacting proteins by pulldown and tandem mass spectrometry. We found an unexpected association between ClpX and proteins involved in DNA replication, and we confirm a physical association between ClpX and the essential DNA maintenance protein single-stranded-DNA binding protein (SSB). Purified SSB is not degraded by ClpXP1P2; instead, SSB enhances ATP hydrolysis by ClpX and degradation of the model substrate GFP-SsrA by ClpXP1P2. This activation of ClpX is mediated by the C-terminal tail of SSB, which had been implicated in the activation of other ATPases associated with DNA replication. Consistent with the predicted interactions, depletion of clpX transcript perturbs DNA replication. These data reveal that ClpX participates in DNA replication and identify the first activator of ClpX in mycobacteria.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. This work confirms ClpX's essentiality and describes a novel interaction between ClpX and SSB, a component of the DNA replication machinery. Further, we demonstrate that a loss of ClpX is sufficient to interrupt DNA replication, suggesting that the ClpX-SSB complex may play a role in DNA replication in mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Bacteriano , Proteínas de Ligação a DNA , Endopeptidase Clp/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ligação Proteica
14.
J Bacteriol ; 203(22): e0041921, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516286

RESUMO

Mycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under nongrowing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a few of these have been verified by independent experimental methods. Furthermore, some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains, each producing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed polar fluorescence patterns characteristic of IMD proteins. Twenty of these had previously been suggested to localize to the IMD based on proteomic data. Of the nine remaining IMD candidate proteins, three were confirmed by biochemical methods to be associated with the IMD. Taken together, this new colocalization strategy is effective in verifying the IMD association of proteins found by proteomic analyses while facilitating the discovery of additional IMD-associated proteins. IMPORTANCE The intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis. However, proteomics on its own is unlikely to detect every IMD-associated protein because of technical and biological limitations. Here, we describe fluorescent protein colocalization as an alternative, independent approach. Using a combination of fluorescence microscopy, proteomics, and subcellular fractionation, we identified three new proteins associated with the IMD. Such a robust method to rigorously define IMD proteins will benefit future investigations to decipher the synthesis, maintenance, and functions of this membrane domain and help delineate a more general mechanism of subcellular protein localization in mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Imagem Óptica/métodos , Proteínas de Bactérias/genética , Membrana Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium smegmatis/genética , Domínios Proteicos
16.
Nucleic Acids Res ; 47(18): 9934-9949, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504787

RESUMO

The pathogenicity of Mycobacterium tuberculosis depends upon its ability to catabolize host cholesterol. Upregulation of the methylcitrate cycle (MCC) is required to assimilate and detoxify propionyl-CoA, a cholesterol degradation product. The transcription of key genes prpC and prpD in MCC is activated by MtPrpR, a member of a family of prokaryotic transcription factors whose structures and modes of action have not been clearly defined. We show that MtPrpR has a novel overall structure and directly binds to CoA or short-chain acyl-CoA derivatives to form a homotetramer that covers the binding cavity and locks CoA tightly inside the protein. The regulation of this process involves a [4Fe4S] cluster located close to the CoA-binding cavity on a neighboring chain. Mutations in the [4Fe4S] cluster binding residues rendered MtPrpR incapable of regulating MCC gene transcription. The structure of MtPrpR without the [4Fe4S] cluster-binding region shows a conformational change that prohibits CoA binding. The stability of this cluster means it is unlikely a redox sensor but may function by sensing ambient iron levels. These results provide mechanistic insights into this family of critical transcription factors who share similar structures and regulate gene transcription using a combination of acyl-CoAs and [4Fe4S] cluster.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Fatores de Transcrição/química , Acil Coenzima A/genética , Proteínas de Bactérias/genética , Colesterol/genética , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/patogenicidade , Proteínas PrPC/química , Proteínas PrPC/genética , Fatores de Transcrição/genética , Tuberculose/genética , Tuberculose/microbiologia
17.
Proc Natl Acad Sci U S A ; 115(25): 6464-6469, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871950

RESUMO

One key to the success of Mycobacterium tuberculosis as a pathogen is its ability to reside in the hostile environment of the human macrophage. Bacteria adapt to stress through a variety of mechanisms, including the use of small regulatory RNAs (sRNAs), which posttranscriptionally regulate bacterial gene expression. However, very little is currently known about mycobacterial sRNA-mediated riboregulation. To date, mycobacterial sRNA discovery has been performed primarily in log-phase growth, and no direct interaction between any mycobacterial sRNA and its targets has been validated. Here, we performed large-scale sRNA discovery and expression profiling in M. tuberculosis during exposure to five pathogenically relevant stresses. From these data, we identified a subset of sRNAs that are highly induced in multiple stress conditions. We focused on one of these sRNAs, ncRv11846, here renamed mycobacterial regulatory sRNA in iron (MrsI). We characterized the regulon of MrsI and showed in mycobacteria that it regulates one of its targets, bfrA, through a direct binding interaction. MrsI mediates an iron-sparing response that is required for optimal survival of M. tuberculosis under iron-limiting conditions. However, MrsI is induced by multiple host-like stressors, which appear to trigger MrsI as part of an anticipatory response to impending iron deprivation in the macrophage environment.


Assuntos
Mycobacterium tuberculosis/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Análise de Sequência de RNA/métodos
18.
J Infect Dis ; 222(12): 2093-2102, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32060529

RESUMO

BACKGROUND: Mycobacterium tuberculosis remains a global health problem and clinical management is complicated by difficulty in discriminating between latent infection and active disease. While M. tuberculosis-reactive antibody levels are heterogeneous, studies suggest that levels of IgG glycosylation differ between disease states. Here we extend this observation across antibody domains and M. tuberculosis specificities to define changes with the greatest resolving power. METHODS: Capillary electrophoretic glycan analysis was performed on bulk non-antigen-specific IgG, bulk Fc domain, bulk Fab domain, and purified protein derivative (PPD)- and Ag85A-specific IgG from subjects with latent (n = 10) and active (n = 20) tuberculosis. PPD-specific isotype/subclass, PPD-specific antibody-dependent phagocytosis, cellular cytotoxicity, and natural killer cell activation were assessed. Discriminatory potentials of antibody features were evaluated individually and by multivariate analysis. RESULTS: Parallel profiling of whole, Fc, and Fab domain-specific IgG glycosylation pointed to enhanced differential glycosylation on the Fc domain. Differential glycosylation was observed across antigen-specific antibody populations. Multivariate modeling highlighted Fc domain glycan species as the top discriminatory features, with combined PPD IgG titers and Fc domain glycans providing the highest classification accuracy. CONCLUSIONS: Differential glycosylation occurs preferentially on the Fc domain, providing significant discriminatory power between different states of M. tuberculosis infection and disease.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Tuberculose Latente/diagnóstico , Tuberculose/diagnóstico , Aciltransferases/análise , Adolescente , Adulto , Idoso , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Imunoglobulina G/análise , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Polissacarídeos/análise , Tuberculina/análise
19.
PLoS Pathog ; 14(3): e1006939, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505613

RESUMO

Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/genética , Elementos de DNA Transponíveis , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/classificação , Fenótipo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Sequenciamento Completo do Genoma
20.
PLoS Pathog ; 14(5): e1007060, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782535

RESUMO

Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44-11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Macrófagos Peritoneais/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/imunologia , Animais , Antígenos de Bactérias/imunologia , Western Blotting , Linhagem Celular , Citometria de Fluxo , Listeria/fisiologia , Pulmão/citologia , Pulmão/microbiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/efeitos da radiação , Tioglicolatos/farmacologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA