Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 142(32): 13878-13885, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32673484

RESUMO

Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.

2.
Macromol Rapid Commun ; 41(6): e1900599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017291

RESUMO

Understanding, predicting, and controlling the self-assembly behavior of stimuli-responsive block copolymers remains a pertinent challenge. As such, the copolymer blending protocol provides an accessible methodology for obtaining a range of intermediate polymeric nanostructures simply by blending two or more block copolymers in the desired molar ratio to target specific stimuli-responsiveness. Herein, thermoresponsive diblock copolymers are blended in various combinations to investigate whether the resultant cloud point temperature can be modulated by simple manipulation of the molar ratio. Thermoresponsive amphiphilic diblock copolymers composed of statistical poly(n-butyl acrylate-co-N,N-dimethylacrylamide) core-forming blocks and four different thermoresponsive corona-forming blocks, namely poly(diethylene glycol monomethyl ether methacrylate) (p(DEGMA)), poly(N-isopropylacrylamide), poly(N,N-diethylacrylamide), and poly(oligo(ethylene glycol) monomethyl ether methacrylate) (p(OEGMA)) are selected for evaluation. Using variable temperature turbidimetry, the thermoresponsive behavior of blended diblock copolymer self-assemblies is assessed and compared to the thermoresponsive behavior of the constituent pure diblock copolymer micelles to determine whether comicellization is achieved and more significantly, whether the two blended corona-forming thermoresponsive blocks exhibit cooperative behavior. Interestingly, blended diblock copolymer micelles composed of p(DEGMA)/p(OEGMA) mixed coronae display cooperative behavior, highlighting the potential of copolymer blending for the preparation of stimuli-responsive nanomaterials in applications such as oil recovery, drug delivery, biosensing, and catalysis.


Assuntos
Micelas , Polímeros/química , Polímeros/síntese química , Acrilamidas/química , Acrilatos/química , Resinas Acrílicas/química , Metacrilatos/química , Polietilenoglicóis/química , Polimerização , Propriedades de Superfície , Temperatura
3.
Eur Polym J ; 1412020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33162563

RESUMO

Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.

4.
J Am Chem Soc ; 141(7): 2742-2753, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689954

RESUMO

Cylinders are fascinating structures with uniquely high surface area, internal volume, and rigidity. On the nanoscale, a broad range of applications have demonstrated advantageous behavior of cylindrical micelles or bottlebrush polymers over traditional spherical nano-objects. In the past, obtaining pure samples of cylindrical nanostructures using polymer building blocks via conventional self-assembly strategies was challenging. However, in recent years, the development of advanced methods including polymerization-induced self-assembly, crystallization-driven self-assembly, and bottlebrush polymer synthesis has facilitated the easy synthesis of cylindrical nano-objects at industrially relevant scales. In this Perspective, we discuss these techniques in detail, highlighting the advantages and disadvantages of each strategy and considering how the cylindrical nanostructures that are obtained differ in their chemical structure, physical properties, colloidal stability, and reactivity. In addition, we propose future challenges to address in this rapidly expanding field.

5.
J Am Chem Soc ; 141(51): 20234-20248, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782652

RESUMO

The dynamic interactions of membranes, particularly their fusion and fission, are critical for the transmission of chemical information between cells. Fusion is primarily driven by membrane tension built up through membrane deformation. For artificial polymersomes, fusion is commonly induced via the external application of a force field. Herein, fusion-promoted development of anisotropic tubular polymersomes (tubesomes) was achieved in the absence of an external force by exploiting the unique features of aqueous ring-opening metathesis polymerization-induced self-assembly (ROMPISA). The out-of-equilibrium tubesome morphology was found to arise spontaneously during polymerization, and the composition of each tubesome sample (purity and length distribution) could be manipulated simply by targeting different core-block degrees of polymerization (DPs). The evolution of tubesomes was shown to occur via fusion of "monomeric" spherical polymersomes, evidenced most notably by a step-growth-like relationship between the fraction of tubular to spherical nano-objects and the average number of fused particles per tubesome (analogous to monomer conversion and DP, respectively). Fusion was also confirmed by Förster resonance energy transfer (FRET) studies to show membrane blending and confocal microscopy imaging to show mixing of the polymersome lumens. We term this unique phenomenon polymerization-induced polymersome fusion, which operates via the buildup of membrane tension exerted by the growing polymer chains. Given the growing body of evidence demonstrating the importance of nanoparticle shape on biological activity, our methodology provides a facile route to reproducibly obtain samples containing mixtures of spherical and tubular polymersomes, or pure samples of tubesomes, of programmed length. Moreover, the capability to mix the interior aqueous compartments of polymersomes during polymerization-induced fusion also presents opportunities for its application in catalysis, small molecule trafficking, and drug delivery.


Assuntos
Complexos de Coordenação/síntese química , Polímeros/síntese química , Anisotropia , Complexos de Coordenação/química , Transferência Ressonante de Energia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
6.
Biomacromolecules ; 20(2): 1077-1086, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30676716

RESUMO

H2S is a gasotransmitter with several physiological roles, but its reactivity and short half-life in biological media make its controlled delivery difficult. For biological applications of the gas, hydrogels have the potential to deliver H2S with several advantages over other donor systems, including localized delivery, controlled release rates, biodegradation, and variable mechanical properties. In this study, we designed and evaluated peptide-based H2S-releasing hydrogels with controllable H2S delivery. The hydrogels were prepared from short, self-assembling aromatic peptide amphiphiles (APAs), functionalized on their N-terminus with S-aroylthiooximes (SATOs), which release H2S in response to a thiol trigger. The APAs were studied both in solution and in gel forms, with gelation initiated by addition of CaCl2. Various substituents were included on the SATO component of the APAs in order to evaluate their effects on self-assembled morphology and H2S release rate in both the solution and gel phases. Transmission electron microscopy (TEM) images confirmed that all H2S-releasing APAs self-assembled into nanofibers above a critical aggregation concentration (CAC) of ∼0.5 mg/mL. Below the CAC, substituents on the SATO group affected H2S release rates predictably in line with electronic effects (Hammett σ values) according to a linear free energy relationship. Above the CAC, circular dichroism, infrared, and fluorescence spectroscopies demonstrated that substituents influenced the self-assembled structures by affecting hydrogen bonding (ß-sheet formation) and π-π stacking. At these concentrations, electronic control over release rates diminished, both in solution and in the gel form. Rather, the release rate depended primarily on the degree of organization in the ß-sheets and the amount of π-π stacking. This supramolecular control over release rate may enable the evaluation of H2S-releasing hydrogels with different release rates in biological applications.


Assuntos
Hidrogéis/química , Sulfeto de Hidrogênio/química , Peptídeos/química , Dicroísmo Circular/métodos , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Nanofibras/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Infravermelho/métodos
7.
Macromol Rapid Commun ; 40(2): e1800460, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30062711

RESUMO

The preparation of a functional fluorine-containing block copolymer using reversible addition-fragmentation chain-transfer dispersion polymerization in DMSO as a "platform/scaffold" is explored. The nanostructures, comprised of poly(ethyleneglycol)-b-poly(pentafluorophenyl methacrylate) or PEG-b-P(PFMA), are formulated via photo-initiated polymerization-induced self-assembly (PISA) followed by post-polymerization modification using different primary amines. A combination of light scattering and microscopy techniques are used to characterize the resulting morphologies. It is found that upon varying the degree of polymerization of the core-forming block of PFMA, only uniform spheres (with textured surfaces) are obtained. These nanostructures are subsequently modified by cross-linking using a non-responsive and a redox-responsive diamine, thus imparting stability to the particles in water. In response to intracellular glutathione (GSH) concentration, destabilization of the micelles occurs as evidenced by dynamic light scattering. The well-defined size, inherent reactivity of the nanoparticles toward nucleophiles, and GSH-responsiveness of the nanospheres make them ideal scaffolds for drug delivery to intracellular compartments with reductive environments.


Assuntos
Técnicas de Química Sintética/métodos , Luz , Metacrilatos/química , Nanoestruturas/química , Polimerização/efeitos da radiação , Polímeros/química , Aminas/química , Glutationa/química , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Nanoestruturas/ultraestrutura , Polímeros/síntese química , Água/química
8.
Angew Chem Int Ed Engl ; 57(48): 15733-15737, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30339319

RESUMO

We report an in silico method to predict monomers suitable for use in polymerization-induced self-assembly (PISA). By calculating the dependence of LogPoct /surface area (SA) on the length of the growing polymer chain, the change in hydrophobicity during polymerization was determined. This allowed for evaluation of the capability of a monomer to polymerize to form self-assembled structures during chain extension. Using this method, we identified five new monomers for use in aqueous PISA via reversible addition-fragmentation chain transfer (RAFT) polymerization, and confirmed that these all successfully underwent PISA to produce nanostructures of various morphologies. The results obtained using this method correlated well with and predicted the differences in morphology obtained from the PISA of block copolymers of similar molecular weight but different chemical structures. Thus, we propose this method can be utilized for the discovery of new monomers for PISA and also the prediction of their self-assembly behavior.

9.
Angew Chem Int Ed Engl ; 57(33): 10672-10676, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29944771

RESUMO

Water-soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring-opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water-soluble polymers has yet to be realized. To address this, we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water-insoluble polymer, polymerization-induced self-assembly (PISA) occurs and a variety of self-assembled nano-object morphologies can be accessed.

10.
Mol Pharm ; 14(4): 1300-1306, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28300411

RESUMO

We report the preparation of S-aroylthiooxime (SATO) functionalized amphiphilic block copolymer micelles that release hydrogen sulfide (H2S), a gaseous signaling molecule of relevance to various physiological and pathological conditions. The micelles release H2S in response to cysteine with a half-life of 3.3 h, which is substantially slower than a related small molecule SATO. Exogenous administration of H2S impacts growth and proliferation of cancer cells; however, the limited control over H2S generation from inorganic sulfide sources results in conflicting reports. Therefore, we compare the cellular cytotoxicity of SATO-functionalized micelles, which release H2S in a sustained manner, to Na2S, which releases H2S in a single dose. Our results show that H2S-releasing micelles significantly reduce the survival of HCT116 colon cancer cells relative to Na2S, GYY4137, and a small molecule SATO, indicating that release kinetics may play an important role in determining toxicity of H2S toward cancer cells. Furthermore, H2S-releasing micelles are well tolerated by immortalized fibroblasts (NIH/3T3 cells), suggesting a selective toxicity of H2S toward cancer cells.


Assuntos
Sulfeto de Hidrogênio/química , Polímeros/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/química , Células HCT116 , Meia-Vida , Humanos , Cinética , Camundongos , Micelas , Morfolinas/química , Morfolinas/farmacologia , Células NIH 3T3 , Compostos Organotiofosforados/química , Compostos Organotiofosforados/farmacologia , Polímeros/farmacologia , Sulfetos/química
11.
J Am Chem Soc ; 138(41): 13477-13480, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27715026

RESUMO

Carbonyl sulfide (COS) is a gas that may play important roles in mammalian and bacterial biology, but its study is limited by a lack of suitable donor molecules. We report here the use of N-thiocarboxyanhydrides (NTAs) as COS donors that release the gas in a sustained manner under biologically relevant conditions with innocuous peptide byproducts. Carbonic anhydrase converts COS into H2S, allowing NTAs to serve as either COS or H2S donors, depending on the availability of the enzyme. Analysis of the pseudo-first-order H2S release rate under biologically relevant conditions revealed a release half-life of 75 min for the small molecule NTA under investigation. A polynorbornene bearing pendant NTAs made by ring-opening metathesis polymerization was also synthesized to generate a polymeric COS/H2S donor. A half-life of 280 min was measured for the polymeric donor. Endothelial cell proliferation studies revealed an enhanced rate of proliferation for cells treated with the NTA over untreated controls.


Assuntos
Portadores de Fármacos/química , Sulfeto de Hidrogênio/química , Polímeros/química , Óxidos de Enxofre/química , Química Verde , Hidrazinas/química
12.
J Am Chem Soc ; 138(22): 6998-7004, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27219866

RESUMO

Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.

13.
Macromol Rapid Commun ; 37(7): 616-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26847467

RESUMO

Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide.


Assuntos
Polímeros/química , Cromatografia em Gel , Grafite/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Peso Molecular , Norbornanos/química , Poliésteres/química , Polimerização
14.
ACS Catal ; 14(8): 6217-6227, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38660608

RESUMO

Since the earliest investigations of olefin metathesis catalysis, light has been the choice for controlling the catalyst activity on demand. From the perspective of energy efficiency, temporal and spatial control, and selectivity, photochemistry is not only an attractive alternative to traditional thermal manufacturing techniques but also arguably a superior manifold for advanced applications like additive manufacturing (AM). In the last three decades, pioneering work in the field of ring-opening metathesis polymerization (ROMP) has broadened the scope of material properties achievable through AM, particularly using light as both an activating and deactivating stimulus. In this Perspective, we explore trends in photocontrolled ROMP systems with an emphasis on approaches to photoinduced activation and deactivation of metathesis catalysts. Recent work has yielded a myriad of commercial and synthetically accessible photosensitive catalyst systems, although comparatively little attention has been paid to achieving precise control over polymer morphology using light. Metal-free, photophysical, and living ROMP systems have also been relatively underexplored. To take fuller advantage of both the thermomechanical properties of ROMP polymers and the operational simplicity of photocontrol, clear directions for the field are to improve the reversibility of activation and deactivation strategies as well as to further develop photocontrolled approaches to tuning cross-link density and polymer tacticity.

15.
Sci Adv ; 10(30): eadm9963, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047094

RESUMO

Polyvinyl chloride (PVC) is ubiquitous in everyday life; however, it is not recycled because it degrades uncontrollably into toxic products above 250°C. Therefore, it is of interest to controllably dechlorinate PVC at mild temperatures to generate narrowly distributed carbon materials. We present a catalytic route to dechlorinate PVC (~90% reduction of Cl content) at mild temperature (200°C) to produce gas H2 (with negligible coproduction of corrosive gas HCl) and carbon materials using Ga as a liquid metal (LM) catalyst. A LM was used to promote intimate contact between PVC and the catalytic sites. During dechlorination of PVC, Cl is sequestrated in the carbonaceous solid product. Later, chlorine is easily removed with an acetone wash at room temperature. The Ga LM catalyst is reusable, outperforms a traditional supported metal catalyst, and successfully converts (untreated) discarded PVC pipe.

17.
Polym Chem ; 13(27): 4047-4053, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35923350

RESUMO

We report the synthesis of redox- and pH-sensitive block copolymer micelles that contain chiral cores composed of helical poly(aryl isocyanide)s. Pentafluorophenyl (PFP) ester-containing micelles synthesised via nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers are modified post-polymerisation with various diamines to introduce cross-links and/or achieve stimulus-sensitive nanostructures. The successful introduction of the diamines is confirmed by Fourier-transform infrared spectroscopy (FT-IR), while the stabilisation effect of the cross-linking is explored by dynamic light scattering (DLS). The retention of the helicity of the core-forming polymer block is verified by circular dichroism (CD) spectroscopy and the stimuli-responsiveness of the nanoparticles towards a reducing agent (l-glutathione, GSH) and pH is evaluated by following the change in the size of the nanoparticles by DLS. These stimuli-responsive nanoparticles could find use in applications such as drug delivery, nanosensors or biological imaging.

18.
Adv Sci (Weinh) ; 9(14): e2200770, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274480

RESUMO

The development of chemistry is reported to implement selective dual-wavelength olefin metathesis polymerization for continuous additive manufacturing (AM). A resin formulation based on dicyclopentadiene is produced using a latent olefin metathesis catalyst, various photosensitizers (PSs) and photobase generators (PBGs) to achieve efficient initiation at one wavelength (e.g., blue light) and fast catalyst decomposition and polymerization deactivation at a second (e.g., UV-light). This process enables 2D stereolithographic (SLA) printing, either using photomasks or patterned, collimated light. Importantly, the same process is readily adapted for 3D continuous AM, with printing rates of 36 mm h-1 for patterned light and up to 180 mm h-1 using un-patterned, high intensity light.


Assuntos
Alcenos , Impressão Tridimensional , Alcenos/química , Catálise , Luz , Polimerização
19.
ACS Appl Mater Interfaces ; 14(45): 51301-51306, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318511

RESUMO

Thermoset materials comprise a significant proportion of high-performance plastics due to their shape permanence and excellent thermal and mechanical properties. However, these properties come at the expense of degradability. Here, we show for the first time that the industrial thermoset polydicyclopentadiene (PDCPD) can be additively manufactured (AM) with degradable 2,3-dihydrofuran (DHF) linkages using a photochemical approach. Treatment of the manufactured objects with acid results in rapid degradation to soluble byproducts. This work highlights the potential of ring-opening metathesis polymerization (ROMP) chemistry to create degradable materials amenable to advanced manufacturing processes.

20.
ACS Macro Lett ; 11(4): 498-503, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35575334

RESUMO

Polymers that exhibit a lower critical solution temperature (LCST) have been of great interest for various biological applications such as drug or gene delivery, controlled release systems, and biosensing. Tuning the LCST behavior through control over polymer composition (e.g., upon copolymerization of monomers with different hydrophobicity) is a widely used method, as the phase transition is greatly affected by the hydrophilic/hydrophobic balance of the copolymers. However, the lack of a general method that relates copolymer hydrophobicity to their temperature response leads to exhaustive experiments when seeking to obtain polymers with desired properties. This is particularly challenging when the target copolymers are comprised of monomers that individually form nonresponsive homopolymers, that is, only when copolymerized do they display thermoresponsive behavior. In this study, we sought to develop a predictive relationship between polymer hydrophobicity and cloud point temperature (TCP). A series of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic alkyl acrylate monomers, and their hydrophobicity was compared using surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between the Log Poct/SA of the copolymers and their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational tool to improve the rational design of copolymers with desired temperature responses prior to synthesis.


Assuntos
Acrilamida , Polímeros , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Polimerização , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA