Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
2.
EMBO J ; 40(4): e105120, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368531

RESUMO

Autophagy is a lysosome-dependent degradation pathway essential to maintain cellular homeostasis. Therefore, either defective or excessive autophagy may be detrimental for cells and tissues. The past decade was characterized by significant advances in molecular dissection of stimulatory autophagy inputs; however, our understanding of the mechanisms that restrain autophagy is far from complete. Here, we describe a negative feedback mechanism that limits autophagosome biogenesis based on the selective autophagy-mediated degradation of ATG13, a component of the ULK1 autophagy initiation complex. We demonstrate that the centrosomal protein OFD1 acts as bona fide autophagy receptor for ATG13 via direct interaction with the Atg8/LC3/GABARAP family of proteins. We also show that patients with Oral-Facial-Digital type I syndrome, caused by mutations in the OFD1 gene, display excessive autophagy and that genetic inhibition of autophagy in a mouse model of the disease, significantly ameliorates polycystic kidney, a clinical manifestation of the disorder. Collectively, our data report the discovery of an autophagy self-regulated mechanism and implicate dysregulated autophagy in the pathogenesis of renal cystic disease in mammals.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Renais Policísticas/patologia , Proteínas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Doenças Renais Policísticas/etiologia , Doenças Renais Policísticas/metabolismo , Proteínas/genética
3.
EMBO J ; 40(10): e106503, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33934390

RESUMO

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Oryzias , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Genet Med ; 26(4): 101059, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158857

RESUMO

PURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In 1 family with 2 affected males, we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), whereas 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex, which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron-containing genes due to germline variation in ZRSR2.


Assuntos
Processamento Alternativo , Síndromes Orofaciodigitais , Masculino , Humanos , Processamento Alternativo/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA , Íntrons , Spliceossomos/genética , Ribonucleoproteínas/genética
5.
Mol Pharm ; 20(5): 2326-2340, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976623

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Despite recent therapeutic advancements, resistance to 5-fluorouracil (5-FU) remains a major obstacle to the successful treatment of this disease. We have previously identified the ribosomal protein uL3 as a key player in the cell response to 5-FU, and loss of uL3 is associated with 5-FU chemoresistance. Natural products, like carotenoids, have shown the ability to enhance cancer cell response to drugs and may provide a safer choice to defeat chemoresistance in cancer. Transcriptome analysis of a cohort of 594 colorectal patients revealed a correlation between uL3 expression and both progression-free survival and response to treatment. RNA-Seq data from uL3-silenced CRC cells demonstrated that a low uL3 transcriptional state was associated with an increased expression of specific ATP-binding cassette (ABC) genes. Using two-dimensional (2D) and three-dimensional (3D) models of 5-FU-resistant CRC cells stably silenced for uL3, we investigated the effect of a novel therapeutic strategy by combining ß-carotene and 5-FU using nanoparticles (NPs) as a drug delivery system. Our results indicated that the combined treatment might overcome 5-FU chemoresistance, inducing cell cycle arrest in the G2/M phase and apoptosis. Furthermore, the combined treatment significantly reduced the expression levels of analyzed ABC genes. In conclusion, our findings suggest that ß-carotene combined with 5-FU may be a more effective therapeutic approach for treating CRC cells with low levels of uL3.


Assuntos
Neoplasias Colorretais , beta Caroteno , Humanos , beta Caroteno/farmacologia , beta Caroteno/metabolismo , beta Caroteno/uso terapêutico , Proteína Supressora de Tumor p53/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica
6.
Am J Med Genet C Semin Med Genet ; 190(1): 57-71, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112477

RESUMO

The OFD1 protein is necessary for the formation of primary cilia and left-right asymmetry establishment but additional functions have also been ascribed to this multitask protein. When mutated, this protein results in a variety of phenotypes ranging from multiorgan involvement, such as OFD type I (OFDI) and Joubert syndromes (JBS10), and Primary ciliary dyskinesia (PCD), to the engagement of single tissues such as in the case of retinitis pigmentosa (RP23). The inheritance pattern of these condition differs from X-linked dominant male-lethal (OFDI) to X-linked recessive (JBS10, PCD, and RP23). Distinctive biological peculiarities of the protein, which can contribute to explain the extreme clinical variability and the genetic mechanisms underlying the different disorders are discussed. The extensive spectrum of clinical manifestations observed in OFD1-mutated patients represents a paradigmatic example of the complexity of genetic diseases. The elucidation of the mechanisms underlying this complexity will expand our comprehension of inherited disorders and will improve the clinical management of patients.


Assuntos
Anormalidades Múltiplas , Doenças Renais Císticas , Retinose Pigmentar , Anormalidades Múltiplas/genética , Cílios/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo , Proteínas/genética , Retinose Pigmentar/genética
7.
Am J Med Genet C Semin Med Genet ; 190(1): 102-108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35488810

RESUMO

Biallelic loss-of-function (LoF) variants in CENPF gene are responsible for Strømme syndrome, a condition presenting with intestinal atresia, anterior ocular chamber anomalies, and microcephaly. Through an international collaboration, four individuals (three males and one female) carrying CENPF biallelic variants, including two missense variants in homozygous state and four LoF variants, were identified by exome sequencing. All individuals had variable degree of developmental delay/intellectual disability and microcephaly (ranging from -2.9 SDS to -5.6 SDS) and a recognizable pattern of dysmorphic facial features including inverted-V shaped interrupted eyebrows, epicanthal fold, depressed nasal bridge, and pointed chin. Although one of the cases had duodenal atresia, all four individuals did not have the combination of internal organ malformations of Strømme syndrome (intestinal atresia and anterior eye segment abnormalities). Immunofluorescence analysis on skin fibroblasts on one of the four cases with the antibody for ARL13B that decorates primary cilia revealed shorter primary cilia that are consistent with a ciliary defect. This case-series of individuals with biallelic CENPF variants suggests the spectrum of clinical manifestations of the disorder that may be related to CENPF variants is broad and can include phenotypes lacking the cardinal features of Strømme syndrome.


Assuntos
Proteínas Cromossômicas não Histona , Deficiência Intelectual , Atresia Intestinal , Microcefalia , Proteínas dos Microfilamentos , Proteínas Cromossômicas não Histona/genética , Anormalidades do Olho , Feminino , Humanos , Atresia Intestinal/genética , Masculino , Microcefalia/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Fenótipo
8.
Hum Mol Genet ; 29(6): 1018-1029, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32077937

RESUMO

Primary cilia are microtubule-based organelles that assemble and protrude from the surface of most mammalian cells during quiescence. The biomedical relevance of cilia is indicated by disorders ascribed to cilia dysfunction, known as ciliopathies, that display distinctive features including renal cystic disease. In this report, we demonstrate that vacuolar protein sorting 39 (VPS39), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, acts as a negative regulator of ciliogenesis in human renal cells, by controlling the localization of the intraflagellar transport 20 protein at the base of cilia through autophagy. Moreover, we show that VPS39 controls ciliogenesis through autophagy also in vivo in renal tubules of medaka fish. These observations suggest a direct involvement of the HOPS complex in the regulation of autophagy-mediated ciliogenesis and eventually in target selection. Interestingly, we show that the impact of autophagy modulation on ciliogenesis is cell-type dependent and strictly related to environmental stimuli. This report adds a further tile to the cilia-autophagy connection and suggests that VPS39 could represent a new biological target for the recovery of the cilia-related phenotypes observed in the kidneys of patients affected by ciliopathies.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Cílios/fisiologia , Ciliopatias/patologia , Rim/patologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Ciliopatias/metabolismo , Humanos , Rim/metabolismo , Oryzias , Ligação Proteica , Vacúolos , Proteínas de Transporte Vesicular/genética
9.
Hepatology ; 74(6): 3235-3248, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34322899

RESUMO

BACKGROUND AND AIMS: Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS: A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS: In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Cílios/metabolismo , Sirtuína 1/metabolismo , Animais , Neoplasias dos Ductos Biliares/enzimologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/enzimologia , Colangiocarcinoma/patologia , Cílios/patologia , Humanos , Masculino , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
10.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743318

RESUMO

Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Inflamação/patologia , Células Estromais/metabolismo , Microambiente Tumoral
11.
Hum Mol Genet ; 28(5): 764-777, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388222

RESUMO

Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood. Here we provide, for the first time, evidence that the deubiquitinase ubiquitin-specific protease-14 (Usp14), a major regulator of the ubiquitin proteasome system (UPS), controls ciliogenesis, cilia elongation and Hh signal transduction. Moreover, we show that pharmacological inhibition of Usp14 positively affects Hh signal transduction in a model of autosomal dominant polycystic kidney disease. These findings provide new insight into the spectrum of action of UPS in cilia biology and may provide novel opportunities for therapeutic intervention in human conditions associated with ciliary dysfunction.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese/genética , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Biomarcadores , Linhagem Celular , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Fibroblastos , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Mutação , Transporte Proteico , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
12.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670365

RESUMO

MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/biossíntese , Fatores de Transcrição/biossíntese , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Genômica , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Fatores de Transcrição/genética
13.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1022-G1033, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338033

RESUMO

Reduced ciliary expression is reported in several tumors, including cholangiocarcinoma (CCA). We previously showed primary cilia have tumor suppressor characteristics, and HDAC6 is involved in ciliary loss. However, mechanisms of ciliary disassembly are unknown. Herein, we tested the hypothesis that HDAC6-dependent autophagy of primary cilia, i.e., ciliophagy, is the main mechanism driving ciliary disassembly in CCA. Using the cancer genome atlas database, human CCA cells, and a rat orthotopic CCA model, we assessed basal and HDAC6-regulated autophagy levels. The effects of RNA-silencing or pharmacological manipulations of ciliophagy on ciliary expression were assessed. Interactions of ciliary proteins with autophagy machinery was assessed by immunoprecipitations. Cell proliferation was assessed by MTS and IncuCyte. A CCA rat model was used to assess the effects of pharmacological inhibition of ciliophagy in vivo. Autophagy is increased in human CCA, as well as in a rat orthotopic CCA model and human CCA cell lines. Autophagic flux was decreased via inhibition of HDAC6, while it was increased by its overexpression. Inhibition of autophagy and HDAC6 restores cilia and decreases cell proliferation. LC3 interacts with HDAC6 and ciliary proteins, and the autophagy cargo receptor involved in targeting ciliary components to the autophagy machinery is primarily NBR1. Treatment with chloroquine, Ricolinostat (ACY-1215), or their combination decreased tumor growth in vivo. Mice that overexpress the autophagy transcription factor TFEB show a decrease of ciliary number. These results suggest that ciliary disassembly is mediated by HDAC6-regulated autophagy, i.e., ciliophagy. Inhibition of ciliophagy may decrease cholangiocarcinoma growth and warrant further investigations as a potential therapeutic approach.NEW & NOTEWORTHY This work identifies novel targets against primary ciliary disassembly that can lead to new cholangiocarcinoma therapeutic strategies. Furthermore, ciliary loss has been described in different tumors, increasing the significance of our research.


Assuntos
Colangiocarcinoma/patologia , Cílios/fisiologia , Desacetilase 6 de Histona/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Desacetilase 6 de Histona/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Hidroxicloroquina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pirimidinas/farmacologia , Ratos
14.
Gastroenterology ; 156(4): 1173-1189.e5, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452922

RESUMO

BACKGROUND & AIMS: Wilson disease (WD) is an inherited disorder of copper metabolism that leads to copper accumulation and toxicity in the liver and brain. It is caused by mutations in the adenosine triphosphatase copper transporting ß gene (ATP7B), which encodes a protein that transports copper from hepatocytes into the bile. We studied ATP7B-deficient cells and animals to identify strategies to decrease copper toxicity in patients with WD. METHODS: We used RNA-seq to compare gene expression patterns between wild-type and ATP7B-knockout HepG2 cells exposed to copper. We collected blood and liver tissues from Atp7b-/- and Atp7b+/- (control) rats (LPP) and mice; some mice were given 5 daily injections of an autophagy inhibitor (spautin-1) or vehicle. We obtained liver biopsies from 2 patients with WD in Italy and liver tissues from patients without WD (control). Liver tissues were analyzed by immunohistochemistry, immunofluorescence, cell viability, apoptosis assays, and electron and confocal microscopy. Proteins were knocked down in cell lines using small interfering RNAs. Levels of copper were measured in cell lysates, blood samples, liver homogenates, and subcellular fractions by spectroscopy. RESULTS: After exposure to copper, ATP7B-knockout cells had significant increases in the expression of 103 genes that regulate autophagy (including MAP1LC3A, known as LC3) compared with wild-type cells. Electron and confocal microscopy visualized more autophagic structures in the cytoplasm of ATP7B-knockout cells than wild-type cells after copper exposure. Hepatocytes in liver tissues from patients with WD and from Atp7b-/- mice and rats (but not controls) had multiple autophagosomes. In ATP7B-knockout cells, mammalian target of rapamycin (mTOR) had decreased activity and was dissociated from lysosomes; this resulted in translocation of the mTOR substrate transcription factor EB to the nucleus and activation of autophagy-related genes. In wild-type HepG2 cells (but not ATP7B-knockout cells), exposure to copper and amino acids induced recruitment of mTOR to lysosomes. Pharmacologic inhibitors of autophagy or knockdown of autophagy proteins ATG7 and ATG13 induced and accelerated the death of ATP7B-knockout HepG2 cells compared with wild-type cells. Autophagy protected ATP7B-knockout cells from copper-induced death. CONCLUSION: ATP7B-deficient hepatocytes, such as in those in patients with WD, activate autophagy in response to copper overload to prevent copper-induced apoptosis. Agents designed to activate this autophagic pathway might decrease copper toxicity in patients with WD.


Assuntos
Apoptose , Autofagia/genética , ATPases Transportadoras de Cobre/genética , Hepatócitos/fisiologia , Degeneração Hepatolenticular/fisiopatologia , Fígado/fisiopatologia , Animais , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Benzilaminas/farmacologia , Sobrevivência Celular , Cobre/toxicidade , ATPases Transportadoras de Cobre/metabolismo , Feminino , Células Hep G2 , Hepatócitos/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Transporte Proteico , Quinazolinas/farmacologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
15.
Biochem Soc Trans ; 48(5): 1929-1939, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32897366

RESUMO

The OFD1 gene was initially identified as the gene responsible for the X-linked dominant male lethal OFD type I syndrome, a developmental disorder ascribed to cilia disfunction. The transcript has been subsequently associated to four different X-linked recessive conditions, namely Joubert syndrome, retinitis pigmentosa, primary ciliary dyskinesia and Simpson-Golabi-Behmel type 2 syndrome. The centrosomal/basal body OFD1 protein has indeed been shown to be required for primary cilia formation and left-right asymmetry. The protein is also involved in other tasks, e.g. regulation of cellular protein content, constrain of the centriolar length, chromatin remodeling at DNA double strand breaks, control of protein quality balance and cell cycle progression, which might be mediated by non-ciliary activities. OFD1 represents a paradigmatic model of a protein that performs its diverse actions according to the cell needs and depending on the subcellular localization, the cell type/tissue and other possible factors still to be determined. An increased number of multitask protein, such as OFD1, may represent a partial explanation to human complexity, as compared with less complex organisms with an equal or slightly lower number of proteins.


Assuntos
Ciclo Celular , Cromossomos Humanos X , Cílios/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação , Proteínas/genética , Anormalidades Múltiplas/genética , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Centrossomo/ultraestrutura , Cerebelo/anormalidades , Cromatina/metabolismo , Transtornos da Motilidade Ciliar/genética , Citoplasma/metabolismo , Anormalidades do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Rim/metabolismo , Doenças Renais Císticas/genética , Fenótipo , Doenças Raras/genética , Retina/anormalidades , Retinose Pigmentar/genética
16.
Am J Med Genet A ; 182(5): 1259-1262, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32141180

RESUMO

Lateral meningocele syndrome (LMS) is due to specific pathogenic variants in the last exon of NOTCH3 gene. Besides the lateral meningoceles, this condition presents with dysmorphic features, short stature, congenital heart defects, and feeding difficulties. Here, we report a girl with neurosensorial hearing loss, severe gastroesophageal reflux disease, congenital heart defects, multiple renal cysts, kyphosis and left-convex scoliosis, dysmorphic features, and mild developmental delay. Exome sequencing detected the previously unreported de novo loss-of-function variant in exon 33 of NOTCH3 p.(Lys2137fs). Following the identification of the gene defect, MRI of the brain and spine revealed temporal encephaloceles, inner ears anomalies, multiple spinal lateral meningoceles, and intra- and extra-dural arachnoid spinal cysts. This case illustrates the power of reverse phenotyping to establish clinical diagnosis and expands the spectrum of clinical manifestations related to LMS to include inner ear abnormalities and multi-cystic kidney disease.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Meningocele/genética , Receptor Notch3/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Éxons/genética , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Meningocele/diagnóstico por imagem , Meningocele/fisiopatologia , Fenótipo , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Sequenciamento do Exoma
17.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197476

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.


Assuntos
Proliferação de Células , MicroRNAs/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , RNA Neoplásico/metabolismo , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA Neoplásico/genética
18.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244996

RESUMO

The nucleolus is the site of ribosome biogenesis and has been recently described as important sensor for a variety of cellular stressors. In the last two decades, it has been largely demonstrated that many chemotherapeutics act by inhibiting early or late rRNA processing steps with consequent alteration of ribosome biogenesis and activation of nucleolar stress response. The overall result is cell cycle arrest and/or apoptotic cell death of cancer cells. Our previously data demonstrated that ribosomal protein uL3 is a key sensor of nucleolar stress activated by common chemotherapeutic agents in cancer cells lacking p53. We have also demonstrated that uL3 status is associated to chemoresistance; down-regulation of uL3 makes some chemotherapeutic drugs ineffective. Here, we demonstrate that in colon cancer cells, the uL3 status affects rRNA synthesis and processing with consequent activation of uL3-mediated nucleolar stress pathway. Transcriptome analysis of HCT 116p53-/- cells expressing uL3 and of a cell sub line stably depleted of uL3 treated with Actinomycin D suggests a new extra-ribosomal role of uL3 in the regulation of autophagic process. By using confocal microscopy and Western blotting experiments, we demonstrated that uL3 acts as inhibitory factor of autophagic process; the absence of uL3 is associated to increase of autophagic flux and to chemoresistance. Furthermore, experiments conducted in presence of chloroquine, a known inhibitor of autophagy, indicate a role of uL3 in chloroquine-mediated inhibition of autophagy. On the basis of these results and our previous findings, we hypothesize that the absence of uL3 in cancer cells might inhibit cancer cell response to drug treatment through the activation of cytoprotective autophagy. The restoration of uL3 could enhance the activity of many drugs thanks to its pro-apoptotic and anti-autophagic activity.


Assuntos
Nucléolo Celular/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Estresse Fisiológico , Apoptose/genética , Autofagia/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Ribossômico/genética , Proteína Ribossômica L3 , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/genética
19.
Hum Mol Genet ; 26(1): 19-32, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798113

RESUMO

Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.


Assuntos
Cromatina/metabolismo , Cílios/patologia , Reparo do DNA/genética , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Proteínas/metabolismo , Recombinação Genética/genética , Acetilação , Pontos de Checagem do Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Cílios/enzimologia , Quebras de DNA de Cadeia Dupla , Fibroblastos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Síndromes Orofaciodigitais/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Interferente Pequeno/genética
20.
Nature ; 502(7470): 254-7, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089205

RESUMO

The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.


Assuntos
Autofagia , Centríolos/metabolismo , Cílios/fisiologia , Proteínas/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Transporte Proteico , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA