Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 329, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727750

RESUMO

Xylanases are key biocatalysts in the degradation of the ß-1,4-glycosidic linkages in the xylan backbone of hemicellulose. These enzymes are potentially applied in a wide range of bioprocessing industries under harsh conditions. Metagenomics has emerged as powerful tools for the bioprospection and discovery of interesting bioactive molecules from extreme ecosystems with unique features, such as high temperatures. In this study, an innovative combination of function-driven screening of a compost metagenomic library and automatic extraction of halo areas with in-house MATLAB functions resulted in the identification of a promising clone with xylanase activity (LP4). The LP4 clone proved to be an effective xylanase producer under submerged fermentation conditions. Sequence and phylogenetic analyses revealed that the xylanase, Xyl4, corresponded to an endo-1,4-ß-xylanase belonging to glycosyl hydrolase family 10 (GH10). When xyl4 was expressed in Escherichia coli BL21(DE3), the enzyme activity increased about 2-fold compared to the LP4 clone. To get insight on the interaction of the enzyme with the substrate and establish possible strategies to improve its activity, the structure of Xyl4 was predicted, refined, and docked with xylohexaose. Our data unveiled, for the first time, the relevance of the amino acids Glu133 and Glu238 for catalysis, and a close inspection of the catalytic site suggested that the replacement of Phe316 by a bulkier Trp may improve Xyl4 activity. Our current findings contribute to enhancing the catalytic performance of Xyl4 towards industrial applications. KEY POINTS: • A GH10 endo-1,4-ß-xylanase (Xyl4) was isolated from a compost metagenomic library • MATLAB's in-house functions were developed to identify the xylanase-producing clones • Computational analysis showed that Glu133 and Glu238 are crucial residues for catalysis.


Assuntos
Compostagem , Endo-1,4-beta-Xilanases , Escherichia coli , Metagenômica , Filogenia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Biblioteca Gênica , Microbiologia do Solo , Xilanos/metabolismo , Clonagem Molecular , Fermentação , Expressão Gênica , Simulação de Acoplamento Molecular
2.
Mol Ecol ; 32(10): 2396-2412, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298044

RESUMO

Microbe domestication has a major applied relevance but is still poorly understood from an evolutionary perspective. The yeast Torulaspora delbrueckii is gaining importance for biotechnology but little is known about its population structure, variation in gene content or possible domestication routes. Here, we show that T. delbrueckii is composed of five major clades. Among the three European clades, a lineage associated with the wild arboreal niche is sister to the two other lineages that are linked to anthropic environments, one to wine fermentations and the other to diverse sources including dairy products and bread dough (Mix-Anthropic clade). Using 64 genomes we assembled the pangenome and the variable genome of T. delbrueckii. A comparison with Saccharomyces cerevisiae indicated that the weight of the variable genome in the pangenome of T. delbrueckii is considerably smaller. An association of gene content and ecology supported the hypothesis that the Mix-Anthropic clade has the most specialized genome and indicated that some of the exclusive genes were implicated in galactose and maltose utilization. More detailed analyses traced the acquisition of a cluster of GAL genes in strains associated with dairy products and the expansion and functional diversification of MAL genes in strains isolated from bread dough. In contrast to S. cerevisiae, domestication in T. delbrueckii is not primarily driven by alcoholic fermentation but rather by adaptation to dairy and bread-production niches. This study expands our views on the processes of microbe domestication and on the trajectories leading to adaptation to anthropic niches.


Assuntos
Torulaspora , Vinho , Saccharomyces cerevisiae/genética , Torulaspora/genética , Domesticação , Fermentação , Vinho/análise
3.
Appl Microbiol Biotechnol ; 107(17): 5379-5401, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417976

RESUMO

The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited ß-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with ß-glucosidase activity.


Assuntos
Celulases , Compostagem , Microbiota , Metagenômica , Lignina/metabolismo , Carboidratos , Bactérias/metabolismo , Celulases/metabolismo
4.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012483

RESUMO

Despite the importance of ancient DNA for understanding human prehistoric dispersals, poor survival means that data remain sparse for many areas in the tropics, including in Africa. In such instances, analysis of contemporary genomes remains invaluable. One promising approach is founder analysis, which identifies and dates migration events in non-recombining systems. However, it has yet to be fully exploited as its application remains controversial. Here, we test the approach by evaluating the age of sub-Saharan mitogenome lineages sampled outside Africa. The analysis confirms that such lineages in the Americas date to recent centuries-the time of the Atlantic slave trade-thereby validating the approach. By contrast, in North Africa, Southwestern Asia and Europe, roughly half of the dispersal signal dates to the early Holocene, during the "greening" of the Sahara. We elaborate these results by showing that the main source regions for the two main dispersal episodes are distinct. For the recent dispersal, the major source was West Africa, but with two exceptions: South America, where the fraction from Southern Africa was greater, and Southwest Asia, where Eastern Africa was the primary source. These observations show the potential of founder analysis as both a supplement and complement to ancient DNA studies.


Assuntos
DNA Mitocondrial , Pessoas Escravizadas , África Subsaariana , Mudança Climática , DNA Antigo , DNA Mitocondrial/genética , Humanos , Filogenia , Filogeografia
5.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751099

RESUMO

Non-Saccharomyces yeast species are nowadays recognized for their impact on wine´s chemical composition and sensorial properties. In addition, new interest has been given to the commercial exploitation of non-Saccharomyces starter cultures in the wine sector. However, over many years, these yeast species were considered sources of contamination in wine production and conservation, mainly due to the high levels of volatile acidity obtained. The present manuscript systematizes 80 years of literature describing non-Saccharomyces yeast species isolated from grapes and/or grape musts. A link between each reference, the accepted taxonomic name of each species and their geographical occurrence is presented, compiling information for 293 species, in a total of 231 citations. One major focus of this work relates to the isolation of non-Saccharomyces yeasts from grapevines usually ignored in most sampling studies, also as isolation from damaged grapes. These particular niches are sources of specific yeast species, which are not identified in most other explored environments. These yeasts have high potential to be explored for important and diversified biotechnological applications.


Assuntos
Vitis/microbiologia , Vinho/análise , Leveduras/classificação , Leveduras/metabolismo , Biotecnologia , Fermentação , Microbiologia de Alimentos , Leveduras/genética , Leveduras/isolamento & purificação
6.
BMC Microbiol ; 20(1): 60, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32169040

RESUMO

BACKGROUND: Over the last years oleaginous yeasts have been studied for several energetic, oleochemical, medical and pharmaceutical purposes. However, only a small number of yeasts are known and have been deeply exploited. The search for new isolates with high oleaginous capacity becomes imperative, as well as the use of alternative and ecological carbon sources for yeast growth. RESULTS: In the present study a high-throughput screening comprising 366 distinct yeast isolates was performed by applying an optimised protocol based on two approaches: (I) yeast cultivation on solid medium using acetic acid as carbon source, (II) neutral lipid estimation by fluorimetry using the lipophilic dye Nile red. CONCLUSIONS: Results showed that, with the proposed methodology, the oleaginous potential of yeasts with broad taxonomic diversity and variety of growth characteristics was discriminated. Furthermore, this work clearly demonstrated the association of the oleaginous yeast character to the strain level, contrarily to the species-level linkage, as usually stated.


Assuntos
Ácido Acético/metabolismo , Corantes Fluorescentes/química , Oxazinas/química , Leveduras/isolamento & purificação , Meios de Cultura , Ensaios de Triagem em Larga Escala , Metabolismo dos Lipídeos , Microbiologia do Solo , Coloração e Rotulagem , Leveduras/classificação , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
7.
Int J Syst Evol Microbiol ; 70(12): 6307-6312, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33090949

RESUMO

During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).


Assuntos
Filogenia , Saccharomycetales/classificação , Vitis/microbiologia , DNA Fúngico/genética , DNA Intergênico/genética , DNA Espaçador Ribossômico/genética , Itália , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
8.
Antonie Van Leeuwenhoek ; 113(9): 1289-1298, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32577919

RESUMO

A novel yeast species of Starmerella vitis f.a. sp. nov. is proposed to accommodate five strains isolated from flowers, grapes and an insect in the Azores, Canada, Hungary, Palau and Taiwan. As the strains were genetically distinct, we used parsimony network analysis based on ITS-D1/D2 sequences to delineate the species in a statistically objective manner. According to sequence comparisons and phylogenetic analysis, the novel species is most closely related to Starmerella lactis-condensi. The two species cannot be distinguished by conventional physiological tests. The type strain of Starmerella vitis f.a., sp. nov. is CBS 16418T; Mycobank number MB 835251.


Assuntos
Flores/microbiologia , Saccharomycetales/classificação , Saccharomycetales/fisiologia , Vitis/microbiologia , Açores , Canadá , DNA Fúngico/genética , Hungria , Tipagem Molecular , Técnicas de Tipagem Micológica , Palau , RNA Ribossômico/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA , Taiwan
9.
Mol Biol Evol ; 35(7): 1712-1727, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746697

RESUMO

The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.


Assuntos
Adaptação Biológica , Evolução Biológica , Domesticação , Alimentos Fermentados/microbiologia , Saccharomyces cerevisiae/genética , Variações do Número de Cópias de DNA , Fermentação , Transferência Genética Horizontal , Genoma Fúngico , Seleção Genética
10.
Food Microbiol ; 74: 151-162, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29706331

RESUMO

Aiming to elucidate the roles that ecology and geography play in shaping the differentiation of fermentative grape-associated Saccharomyces cerevisiae populations, several locations on six islands of the Azores Archipelago were surveyed. A total of 249 strains were isolated from spontaneous fermentations of grape samples from several varieties of two distinct grapevine species (Vitis vinifera L. and Vitis labrusca L.), in vineyards that are under regular cultivation or in abandoned vineyards. Strains were genetically analyzed using a set of nine microsatellite loci, and also phenotypically characterized using relevant physiological/biotechnological tests. Results showed that genetic divergence among populations of the same island was lower than from populations from different islands. Phenotypic comparison of the populations from each of the islands revealed significant differences between them. Strains isolated from the islands with more intensive viticultural activity - Pico, Terceira and Graciosa - showed higher levels of SO2 tolerance, possibly resulting from selection by human activity. The percentage of strains producing low levels of H2S was higher in S. Jorge (60%). Our findings were supported both by genetic and phenotypic data and provide clear evidence for the prevailing role of the geography over ecology in the differentiation of S. cerevisiae populations in the Azores Archipelago.


Assuntos
Ecologia , Variação Genética , Geografia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Vitis/microbiologia , Açores , DNA Fúngico/análise , DNA Fúngico/genética , Etanol , Fazendas , Fermentação , Genes Fúngicos , Humanos , Sulfeto de Hidrogênio/metabolismo , Ilhas , Repetições de Microssatélites/genética , Fenótipo , Filogenia , Saccharomyces cerevisiae/isolamento & purificação , Especificidade da Espécie , Sulfitos , Dióxido de Enxofre , Vinho
11.
BMC Genomics ; 18(1): 455, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28595605

RESUMO

BACKGROUND: During must fermentation thousands of volatile aroma compounds are formed, with higher alcohols, acetate esters and ethyl esters being the main aromatic compounds contributing to floral and fruity aromas. The action of yeast, in particular Saccharomyces cerevisiae, on the must components will build the architecture of the wine flavour and its fermentation bouquet. The objective of the present work was to better understand the molecular and metabolic bases of aroma production during a fermentation process. For such, comparative transcriptomic and metabolic analysis was performed at two time points (5 and 50 g/L of CO2 released) in fermentations conducted by four yeast strains from different origins and/or technological applications (cachaça, sake, wine, and laboratory), and multivariate factorial analyses were used to rationally identify new targets for improving aroma production. RESULTS: Results showed that strains from cachaça, sake and wine produced higher amounts of acetate esters, ethyl esters, acids and higher alcohols, in comparison with the laboratory strain. At fermentation time T1 (5 g/L CO2 released), comparative transcriptomics of the three S. cerevisiae strains from different fermentative environments in comparison with the laboratory yeast S288c, showed an increased expression of genes related with tetracyclic and pentacyclic triterpenes metabolism, involved in sterol synthesis. Sake strain also showed upregulation of genes ADH7 and AAD6, involved in the formation of higher alcohols in the Ehrlich pathway. For fermentation time point T2 (50 g/L CO2 released), again sake strain, but also VL1 strain, showed an increased expression of genes involved in formation of higher alcohols in the Ehrlich pathway, namely ADH7, ADH6 and AAD6, which is in accordance with the higher levels of methionol, isobutanol, isoamyl alcohol and phenylethanol observed. CONCLUSIONS: Our approach revealed successful to integrate data from several technologies (HPLC, GC-MS, microarrays) and using different data analysis methods (PCA, MFA). The results obtained increased our knowledge on the production of wine aroma and flavour, identifying new gene in association to the formation of flavour active compounds, mainly in the production of fatty acids, and ethyl and acetate esters.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Odorantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Fenótipo
12.
FEMS Yeast Res ; 17(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633312

RESUMO

A double compartment membrane system was constructed in order to systematically study possible microbial interactions between yeasts Saccharomyces cerevisiae and Dekkera bruxellensis and their impact on wine aroma. The presence of D. bruxellensis induced 77 transcripts of S. cerevisiae. These were mostly of unknown function; however, some were involved in thiamine biosynthesis and in amino acid and polyamine transport, suggesting a competitive relationship between the two yeast species. Among the transcripts with no biological function, 14 of them were found to be the members of the PAU gene family that is associated with response to anaerobiosis stress. In separated cultures, S. cerevisiae produced glycerol which was subsequently consumed by D. bruxellensis. The concentration of ethylphenols was reduced and we assume that they were absorbed onto the surfaces of S. cerevisiae yeast walls. Also in separated cultures, D. bruxellensis formed a typical profile of aromatic esters with decreased levels of acetate esters and increased level of ethyl esters.


Assuntos
Dekkera/fisiologia , Regulação Fúngica da Expressão Gênica , Interações Microbianas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Vinho/análise , Vinho/microbiologia , Dekkera/crescimento & desenvolvimento , Ésteres/análise , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/metabolismo
13.
FEMS Yeast Res ; 17(6)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910984

RESUMO

Succinic acid is a platform chemical that plays an important role as precursor for the synthesis of many valuable bio-based chemicals. Its microbial production from renewable resources has seen great developments, specially exploring the use of yeasts to overcome the limitations of using bacteria. The objective of the present work was to screen for succinate-producing isolates, using a yeast collection with different origins and characteristics. Four strains were chosen, two as promising succinic acid producers, in comparison with two low producers. Genome of these isolates was analysed, and differences were found mainly in genes SDH1, SDH3, MDH1 and the transcription factor HAP4, regarding the number of single nucleotide polymorphisms and the gene copy-number profile. Real-time PCR was used to study gene expression of 10 selected genes involved in the metabolic pathway of succinic acid production. Results show that for the non-producing strain, higher expression of genes SDH1, SDH2, ADH1, ADH3, IDH1 and HAP4 was detected, together with lower expression of ADR1 transcription factor, in comparison with the best producer strain. This is the first study showing the capacity of natural yeast isolates to produce high amounts of succinic acid, together with the understanding of the key factors associated, giving clues for strain improvement.


Assuntos
Perfilação da Expressão Gênica , Genômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Dosagem de Genes , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Saccharomyces cerevisiae/genética
14.
FEMS Yeast Res ; 15(6)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26187909

RESUMO

The maintenance of microbial species in different environmental conditions is associated with adaptive microevolutionary changes that are shown here to occur within the descendants of the same strain in comparison with the commercial reference strain. However, scarce information is available regarding changes that occur among strain descendants during their persistence in nature. Herein we evaluate genome variations among four isolates of the commercial winemaking strain Saccharomyces cerevisiae Zymaflore VL1 that were re-isolated from vineyards surrounding wineries where this strain was applied during several years, in comparison with the commercial reference strain. Comparative genome hybridization showed amplification of 14 genes among the recovered isolates being related with mitosis, meiosis, lysine biosynthesis, galactose and asparagine catabolism, besides 9 Ty elements. The occurrence of microevolutionary changes was supported by DNA sequencing that revealed 339-427 SNPs and 12-62 indels. Phenotypic screening and metabolic profiles also distinguished the recovered isolates from the reference strain. We herein show that the transition from nutrient-rich musts to nutritionally scarce natural environments induces adaptive responses and microevolutionary changes promoted by Ty elements and by nucleotide polymorphisms that were not detected in the reference strain.


Assuntos
Adaptação Biológica , Variação Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Hibridização Genômica Comparativa , Evolução Molecular , Amplificação de Genes , Genes Fúngicos , Metaboloma , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Yeast ; 31(7): 265-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752995

RESUMO

Genome sequencing is essential to understand individual variation and to study the mechanisms that explain relations between genotype and phenotype. The accumulated knowledge from large-scale genome sequencing projects of Saccharomyces cerevisiae isolates is being used to study the mechanisms that explain such relations. Our objective was to undertake genetic characterization of 172 S. cerevisiae strains from different geographical origins and technological groups, using 11 polymorphic microsatellites, and computationally relate these data with the results of 30 phenotypic tests. Genetic characterization revealed 280 alleles, with the microsatellite ScAAT1 contributing most to intrastrain variability, together with alleles 20, 9 and 16 from the microsatellites ScAAT4, ScAAT5 and ScAAT6. These microsatellite allelic profiles are characteristic for both the phenotype and origin of yeast strains. We confirm the strength of these associations by construction and cross-validation of computational models that can predict the technological application and origin of a strain from the microsatellite allelic profile. Associations between microsatellites and specific phenotypes were scored using information gain ratios, and significant findings were confirmed by permutation tests and estimation of false discovery rates. The phenotypes associated with higher number of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in the presence of potassium bisulphite) and the presence of galactosidase activity. Our study demonstrates the utility of computational modelling to estimate a strain technological group and phenotype from microsatellite allelic combinations as tools for preliminary yeast strain selection.


Assuntos
DNA Fúngico/genética , Variação Genética , Repetições de Microssatélites/genética , Modelos Genéticos , Saccharomyces cerevisiae/genética , Alelos , Simulação por Computador , Genótipo , Fenótipo , Análise de Componente Principal
16.
Sci Rep ; 14(1): 1476, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233502

RESUMO

Cardiovascular diseases (CVDs) encompass various conditions affecting the heart and its blood vessels and are often linked with oral microbes. Our data analysis aimed to identify oral bacteria from other non-oral sites (i.e., gut, arterial plaque and cultured blood) that could be linked with CVDs. Taxonomic profiling identified bacteria to the species level and compared with the Human Oral Microbiome Database (HOMD). The oral bacteria in the gut, cultured blood and arterial plaque samples were catalogued, with their average frequency calculated for each sample. Additionally, data were filtered by comparison with the Human Microbiome Project (HMP) database. We identified 17,243 microbial species, of which 410 were present in the HOMD database and further denominated as "oral", and were found in at least one gut sample, but only 221 and 169 species were identified in the cultured blood and plaque samples, respectively. Of the 410 species, 153 were present solely in oral-associated environments after comparison with the HMP database, irrespective of their presence in other body sites. Our results suggest a potential connection between the presence of specific species of oral bacterial and occurrence of CVDs. Detecting these oral bacterial species in non-oral sites of patients with CVDs could help uncover the link between oral health and general health, including cardiovascular conditions via bacterial translocation.


Assuntos
Doenças Cardiovasculares , Microbiota , Placa Aterosclerótica , Humanos , Microbiota/genética , Bactérias/genética , Metagenoma
17.
Life (Basel) ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792663

RESUMO

Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.

18.
J Fungi (Basel) ; 9(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836301

RESUMO

Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.

19.
Res Microbiol ; 173(3): 103915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34863883

RESUMO

Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.


Assuntos
COVID-19 , Micoses , COVID-19/diagnóstico , Humanos , Micoses/diagnóstico , Pandemias , Reação em Cadeia da Polimerase/métodos
20.
Mol Diagn Ther ; 26(5): 511-525, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710958

RESUMO

INTRODUCTION: Multiplex quantitative polymerase chain reaction (qPCR) methods for the detection of Aspergillus spp. based only on SYBR Green and melting curve analysis of PCR products are difficult to develop because most targets are located within ITS regions. The aim of this study was to adapt our previously developed methodology based on a multiplex PCR assay coupled with GeneScan analysis to provide a qPCR method. METHODS: A SYBR Green-based real-time PCR assay was optimized to detect A. fumigatus, A. flavus, A. niger, A. terreus, and R. arrhizus in a multiplex assay and applied to cultured fungi and spiked plasma. RESULTS: Different melting temperatures allowed identification of all five pathogens and discrimination between them, even in samples with low amounts of fungal gDNA (from 1.3 to 33.0 pg/µL), which has been reported previously as problematic. No false-positive results were obtained for non-target species, including bacteria and human DNA. This method allowed detection of fungal pathogens in human plasma spiked with fungal DNA and in coinfections of A. niger/R. arrhizus. DISCUSSION: This work provides evidence for the use of a qPCR multiplex method based on SYBR Green and melting curve analysis of PCR products for the detection of A. fumigatus, A. flavus, A. niger, A. terreus, and R. arrhizus. The proposed method is simpler and less expensive than available kits based on fluorescent probes and can be used for aiding diagnosis of the most relevant invasive filamentous fungi, particularly in low-income health care institutions.


Assuntos
Aspergillus , Rhizopus oryzae , Aspergillus/genética , DNA Fúngico/análise , DNA Fúngico/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA