Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genetics ; 180(1): 629-37, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757942

RESUMO

Of the four major dwarfing genes described in sorghum, only Dw3 has been cloned. We used association mapping to characterize the phenotypic effects of the dw3 mutation and to fine map a second, epistatic dwarfing QTL on sorghum chromosome 9 (Sb-HT9.1). Our panel of 378 sorghum inbreds includes 230 sorghum conversion (SC) lines, which are exotic lines that have been introgressed with dwarfing quantitative trait loci (QTL) from a common parent. The causal mutation in dw3 associates with reduced lower internode length and an elongation of the apex, consistent with its role as an auxin efflux carrier. Lines carrying the dw3 mutation display high haplotype homozygosity over several megabases in the Dw3 region, but most markers linked to Dw3 do not associate significantly with plant height due to allele sharing between Dw3 and dw3 individuals. Using markers with a high mutation rate and the dw3 mutation as an interaction term, significant trait associations were detected across a 7-Mb region around Sb-HT9.1, largely due to higher detection power in the SC lines. Conversely, the likely QTL interval for Sb-HT9.1 was reduced to approximately 100 kb, demonstrating that the unique structure of this association panel provides both power and resolution for a genomewide scan.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Sorghum/genética , Alelos , Epistasia Genética , Genes de Plantas , Genoma , Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Mutação , Fenótipo , Fenômenos Fisiológicos Vegetais
2.
Methods Mol Biol ; 1931: 49-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652282

RESUMO

Sorghum is the fifth most important cereal grain crop after corn, wheat, rice, and pearl millet in the world. Conventional sorghum breeding relies on multiple generations of self-pollination to achieve the adequate levels of homozygosity for hybrid evaluation, which adds several years and great cost to the breeding process. As in maize, doubled haploid (DH) is the key technology to speed up the breeding process in sorghum. Through 3 years of efforts, two haploid inducer lines, SMHI01 and SMHI02, were discovered by screening 4000 germplasms worldwide. These two inducers have been evaluated in different growth environments and have shown to generate haploids at frequency of 1-2%. The putative haploids produced with these two inducers were evaluated and ploidy was confirmed cytologically and biochemically. The discovery of these inducer lines is the first step toward a revolutionary change in sorghum breeding.


Assuntos
Sorghum/genética , Grão Comestível/genética , Haploidia , Melhoramento Vegetal/métodos , Polinização/genética
3.
BMC Plant Biol ; 8: 103, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18854043

RESUMO

BACKGROUND: Sorghum [Sorghum bicolor (L.) Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING). RESULTS: A sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). Numerous phenotypes with altered morphological and agronomic traits were observed from M2 and M3 lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid O-methyltransferase (COMT) in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (bmr) phenotype, a trait associated with altered lignin content and increased digestibility. CONCLUSION: TILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of the sorghum research community. Moreover, TILLING has been demonstrated to be applicable for sorghum functional genomics by evaluating a small subset of the EMS-induced mutant lines.


Assuntos
Genoma de Planta , Mutação , Fenótipo , Sorghum/genética , DNA de Plantas/genética , Metanossulfonato de Etila/farmacologia , Genes de Plantas , Genótipo , Mutagênese , Mutagênicos/farmacologia , Característica Quantitativa Herdável , Alinhamento de Sequência , Análise de Sequência de DNA , Sorghum/efeitos dos fármacos
4.
G3 (Bethesda) ; 3(1): 101-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23316442

RESUMO

We describe a recombinant inbred line (RIL) population of 161 F5 genotypes for the widest euploid cross that can be made to cultivated sorghum (Sorghum bicolor) using conventional techniques, S. bicolor × Sorghum propinquum, that segregates for many traits related to plant architecture, growth and development, reproduction, and life history. The genetic map of the S. bicolor × S. propinquum RILs contains 141 loci on 10 linkage groups collectively spanning 773.1 cM. Although the genetic map has DNA marker density well-suited to quantitative trait loci mapping and samples most of the genome, our previous observations that sorghum pericentromeric heterochromatin is recalcitrant to recombination is highlighted by the finding that the vast majority of recombination in sorghum is concentrated in small regions of euchromatin that are distal to most chromosomes. The advancement of the RIL population in an environment to which the S. bicolor parent was well adapted (indeed bred for) but the S. propinquum parent was not largely eliminated an allele for short-day flowering that confounded many other traits, for example, permitting us to map new quantitative trait loci for flowering that previously eluded detection. Additional recombination that has accrued in the development of this RIL population also may have improved resolution of apices of heterozygote excess, accounting for their greater abundance in the F5 than the F2 generation. The S. bicolor × S. propinquum RIL population offers advantages over early-generation populations that will shed new light on genetic, environmental, and physiological/biochemical factors that regulate plant growth and development.


Assuntos
Cruzamento/métodos , Mapeamento Cromossômico , Genótipo , Hibridização Genética , Sorghum/genética , Cruzamentos Genéticos , Repetições de Microssatélites/genética , Locos de Características Quantitativas/genética , Recombinação Genética/genética
5.
Theor Appl Genet ; 118(3): 423-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18985313

RESUMO

Sorghum is distinct from other cereal crops due to its ability to produce profuse amount of epicuticular wax (EW or bloom) on its culm and leaves along with less permeable cuticle which are considered to be important traits contributing to abiotic stress tolerance. Here, we report the molecular mapping and characterization of BL OO M-C UTICLE (BLMC), a locus associated with production of profuse wax, using a mutant mapping population developed from a cross between BTx623 (wild type with profuse wax) and KFS2021 (a mutant with greatly reduced wax). The F2 progenies were genotyped using known and newly developed microsatellite markers to establish a molecular map of BLMC. The locus mapped to a 3.6-centimorgans (cM) interval in the terminal end of sorghum chromosome 10 with flanking markers Xsbarslbk10.47 and Xcup42. Targeted mapping delimited BLMC to as small as 0.7 cM region and facilitated identification of three cosegregating markers with the trait. The BLMC region corresponds to approximately 153,000 bp and candidate genes identified include among others an acyl CoA oxidase (a gene involved in lipid and wax biosynthesis) and seven other putative transcripts. Phenotypic characterization showed that in addition to disrupting the EW production, BLMC mutation reduced culm and leaf cuticle, increased plant death rating in the field at anthesis and significantly reduced the C:28 to C:30 free fatty acid fractions of culm and leaf EW. These results clearly support the important role of BLMC in the expression of profuse wax and enhanced cuticular features of sorghum. Genetic mapping of BLMC opened avenues for identification of genes involved in the cuticle/wax pathway of sorghum and their application for improvement of abiotic stress tolerance.


Assuntos
Genes de Plantas , Sorghum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Mutação , Fenótipo , Análise de Sequência de DNA , Sorghum/anatomia & histologia , Sorghum/fisiologia , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA