Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891906

RESUMO

Multigene prognostic genomic assays have become indispensable in managing early breast cancer (EBC), offering crucial information for risk stratification and guiding adjuvant treatment strategies in conjunction with traditional clinicopathological parameters. The American Society of Clinical Oncology (ASCO) guidelines endorse these assays, though some clinical contexts still lack definitive recommendations. The dynamic landscape of EBC management demands further refinement and optimization of genomic assays to streamline their incorporation into clinical practice. The breast cancer community is poised at the brink of transformative advances in enhancing the clinical utility of genomic assays, aiming to significantly improve the precision and effectiveness of both diagnosis and treatment for women with EBC. This article methodically examines the testing methodologies, clinical validity and utility, costs, diagnostic frameworks, and methodologies of the established genomic tests, including the Oncotype Dx Breast Recurrence Score®, MammaPrint, Prosigna®, EndoPredict®, and Breast Cancer Index (BCI). Among these tests, Prosigna and EndoPredict® have at present been validated only on a prognostic level, while Oncotype Dx, MammaPrint, and BCI hold both a prognostic and predictive role. Oncologists and pathologists engaged in the management of EBC will find in this review a thorough comparison of available genomic assays, as well as strategies to optimize the utilization of the information derived from them.


Assuntos
Neoplasias da Mama , Genômica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Feminino , Prognóstico , Genômica/métodos , Biomarcadores Tumorais/genética , Testes Genéticos/métodos
2.
Pathologica ; 116(3): 153-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38979588

RESUMO

Secondary neoplastic lesions in lymph nodes are predominantly metastases from solid tumors, whereas primary lymph node hemangiomas are exceptionally uncommon, with only 24 well-documented cases in the literature. Histologically, they are characterized by endothelial cells that may appear flattened or enlarged, with variable vascular density, and the presence of stromal elements. Notably, the concurrent presence of a primary hemangioma and a metastasis from breast cancer - the latter being the most prevalent secondary lesion in axillary lymph nodes - represents an unprecedented observation. The unique case presented herein underscores the exceptional rarity of primary lymph node hemangiomas and demonstrates for the first time their possible coexistence with breast cancer metastasis within the same axillary lymph node. In sharing and discussing this case study, we pay homage to Professor Juan Rosai, whose work in redefining rare and complex diagnoses continues to enlighten our understanding of lymph node vascular lesions.


Assuntos
Neoplasias da Mama , Hemangioma , Linfonodos , Metástase Linfática , Humanos , Feminino , Neoplasias da Mama/patologia , Hemangioma/patologia , Linfonodos/patologia , Pessoa de Meia-Idade
3.
Pharmacogenomics ; 25(3): 161-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440825

RESUMO

Introduction: PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Laboratórios , Patologia Molecular , Mutação/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Itália
4.
Virchows Arch ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532196

RESUMO

The estimation of tumor cellular fraction (TCF) is a crucial step in predictive molecular pathology, representing an entry adequacy criterion also in the next-generation sequencing (NGS) era. However, heterogeneity of quantification practices and inter-pathologist variability hamper the robustness of its evaluation, stressing the need for more reliable results. Here, 121 routine histological samples from non-small cell lung cancer (NSCLC) cases with complete NGS profiling were used to evaluate TCF interobserver variability among three different pathologists (pTCF), developing a computational tool (cTCF) and assessing its reliability vs ground truth (GT) tumor cellularity and potential impact on the final molecular results. Inter-pathologist reproducibility was fair to good, with overall Wk ranging between 0.46 and 0.83 (avg. 0.59). The obtained cTCF was comparable to the GT (p = 0.129, 0.502, and 0.130 for surgical, biopsies, and cell block, respectively) and demonstrated good reliability if elaborated by different pathologists (Wk = 0.9). Overall cTCF was lower as compared to pTCF (30 ± 10 vs 52 ± 19, p < 0.001), with more cases < 20% (17, 14%, p = 0.690), but none containing < 100 cells for the algorithm. Similarities were noted between tumor area estimation and pTCF (36 ± 29, p < 0.001), partly explaining variability in the human assessment of tumor cellularity. Finally, the cTCF allowed a reduction of the copy number variations (CNVs) called (27 vs 29, - 6.9%) with an increase of effective CNVs detection (13 vs 7, + 85.7%), some with potential clinical impact previously undetected with pTCF. An automated computational pipeline (Qupath Analysis of Nuclei from Tumor to Uniform Molecular tests, QuANTUM) has been created and is freely available as a QuPath extension. The computational method used in this study has the potential to improve efficacy and reliability of TCF estimation in NSCLC, with demonstrated impact on the final molecular results.

5.
Cancers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893102

RESUMO

Effective risk assessment in early breast cancer is essential for informed clinical decision-making, yet consensus on defining risk categories remains challenging. This paper explores evolving approaches in risk stratification, encompassing histopathological, immunohistochemical, and molecular biomarkers alongside cutting-edge artificial intelligence (AI) techniques. Leveraging machine learning, deep learning, and convolutional neural networks, AI is reshaping predictive algorithms for recurrence risk, thereby revolutionizing diagnostic accuracy and treatment planning. Beyond detection, AI applications extend to histological subtyping, grading, lymph node assessment, and molecular feature identification, fostering personalized therapy decisions. With rising cancer rates, it is crucial to implement AI to accelerate breakthroughs in clinical practice, benefiting both patients and healthcare providers. However, it is important to recognize that while AI offers powerful automation and analysis tools, it lacks the nuanced understanding, clinical context, and ethical considerations inherent to human pathologists in patient care. Hence, the successful integration of AI into clinical practice demands collaborative efforts between medical experts and computational pathologists to optimize patient outcomes.

6.
Crit Rev Oncol Hematol ; 201: 104427, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917944

RESUMO

Mutations in the estrogen receptor alpha gene (ESR1) can lead to resistance to endocrine therapy (ET) in hormone receptor-positive (HR+)/ HER2- metastatic breast cancer (MBC). ESR1 mutations can be detected in up to 40 % of patients pretreated with ET in circulating tumor DNA (ctDNA). Data from prospective randomized trials highlight those patients with HR+/HER2- MBC with detectable ESR1 mutations experience better outcomes when receiving novel selective estrogen receptor degraders (SERDs). There is a high need for optimizing ESR1 testing strategies on liquid biopsy samples in HR+/HER2- MBC, including a hugh quality workflow implementation and molecular pathology reporting standardization. Our manuscript aims to elucidate the clinical and biological rationale for ESR1 testing in MBC, while critically examining the currently available guidelines and recommendations for this specific type of molecular testing on ctDNA. The objective will extend to the critical aspects of harmonization and standardization, specifically focusing on the pathology laboratory workflow. Finally, we propose a clear and comprehensive model for reporting ESR1 testing results on ctDNA in HR+/HER2- MBC.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Receptor alfa de Estrogênio , Receptor ErbB-2 , Fluxo de Trabalho , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Metástase Neoplásica , Patologia Molecular/métodos , Patologia Molecular/normas , Mutação , Biomarcadores Tumorais/genética
7.
Hum Pathol ; 144: 22-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278450

RESUMO

PD-L1 test is recommended in different types of tumors to select patients eligible for immune checkpoint inhibitors (ICI) therapy. Several factors make this test challenging in metastatic triple-negative breast cancer (mTNBC). Different assays and platforms are available, each associated with distinct scoring systems and threshold values specific to the ICI compound used, i.e. CPS≥10 for pembrolizumab and IC ≥ 1 % for atezolizumab. Our objective was to assess the consistency of PD-L1 testing in mTNBC by examining interobserver and interassay reproducibility. We assessed n = 60 mTNBC samples for PD-L1 testing using 22C3 pharmDx assay on a Dako Autostainer Link 48 and VENTANA PD-L1 (SP263) on a Ventana BenchMark Ultra. Additionally, a subset of n = 19 samples was tested using the SP142 assay, also on the Ventana BenchMark Ultra. CPS with both 22C3 and SP263 was independently evaluated by five pathologists, all certified PD-L1 trainers. The IC with SP142 was assessed by three of these pathologists, who have particular expertise in breast pathology. Following the computation of the intraclass correlation coefficient (ICC) for each assay and their respective thresholds, we assessed the agreement between different raters and assays using Fleiss's κ, with a 95 % confidence interval (CI). Overall, we observed a significant (p < 0.001) ICC with both CPS assays [22C3 = 0.939 (CI:0.913-0.96); SP263 = 0.972 (CI:0.96-0.982); combined 22C3-SP263 = 0.909 (CI:0.874-0.938)]. Fleiss's κ confirmed an almost perfect agreement among pathologists and assays: 22C3 = 0.938 (CI:0.857-1.018); SP263 = 0.972 (CI:0.890-1.052); combined 22C3-SP263 = 0.907 (CI:0.869-0.945). Perfect inter-rater agreement was reached considering IC. This study establishes the reliability of assessing CPS in mTNBC using either the 22C3 pharmDx, as employed in the KEYNOTE studies, or the VENTANA SP263 assay. Each assay must be used on its designated platform, namely the Dako for 22C3 pharmDx and the Ventana for VENTANA SP263. It is important to remark that CPS and IC identify different patient cohorts and, therefore, are not interchangeable.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Reprodutibilidade dos Testes , Imuno-Histoquímica , Neoplasias de Mama Triplo Negativas/diagnóstico , Antígeno B7-H1 , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA