Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 18(1): 211, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655189

RESUMO

BACKGROUND: Bovine respiratory disease (BRD) is an important cause of morbidity and mortality and is responsible for most of the injectable antimicrobial use in the feedlot industry. Traditional bacterial culture can be used to diagnose BRD by confirming the presence of causative pathogens and to support antimicrobial selection. However, given that bacterial culture takes up to a week and early intervention is critical for treatment success, culture has limited utility for informing rapid therapeutic decision-making. In contrast, metagenomic sequencing has the potential to quickly resolve all nucleic acid in a sample, including pathogen biomarkers and antimicrobial resistance genes. In particular, third-generation Oxford Nanopore Technology sequencing platforms provide long reads and access to raw sequencing data in real-time as it is produced, thereby reducing the time from sample collection to diagnostic answer. The purpose of this study was to compare the performance of nanopore metagenomic sequencing to traditional culture and sensitivity methods as applied to nasopharyngeal samples from segregated groups of chronically ill feedlot cattle, previously treated with antimicrobials for nonresponsive pneumonia or lameness. RESULTS: BRD pathogens were isolated from most samples and a variety of different resistance profiles were observed across isolates. The sequencing data indicated the samples were dominated by Moraxella bovoculi, Mannheimia haemolytica, Mycoplasma dispar, and Pasteurella multocida, and included a wide range of antimicrobial resistance genes (ARGs), encoding resistance for up to seven classes of antimicrobials. Genes conferring resistance to beta-lactams were the most commonly detected, while the tetH gene was detected in the most samples overall. Metagenomic sequencing detected the BRD pathogens of interest more often than did culture, but there was limited concordance between phenotypic resistance to antimicrobials and the presence of relevant ARGs. CONCLUSIONS: Metagenomic sequencing can reduce the time from sampling to results, detect pathogens missed by bacterial culture, and identify genetically encoded determinants of resistance. Increasing sequencing coverage of target organisms will be an essential component of improving the reliability of this technology, such that it can be better used for the surveillance of pathogens of interest, genetic determinants of resistance, and to inform diagnostic decisions.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Doença Crônica , Farmacorresistência Bacteriana/genética , Reprodutibilidade dos Testes
2.
Microbiol Spectr ; 12(1): e0283223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018980

RESUMO

IMPORTANCE: Wastewater treatment plays an essential role in minimizing negative impacts on downstream aquatic environments. Microbial communities are known to play a vital role in the wastewater treatment process, particularly in the removal of nitrogen and phosphorus, which can be especially damaging to aquatic ecosystems. There is limited understanding of how these microbial communities may change in response to fluctuating temperatures or how seasonality may impact their ability to participate in the treatment process. The findings of this study indicate that the microbial communities of wastewater are relatively stable both compositionally and functionally across fluctuating temperatures.


Assuntos
Microbiota , Esgotos , Nitrogênio , Microbiota/genética , Águas Residuárias , Reatores Biológicos
3.
J Vet Diagn Invest ; 36(3): 400-417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456288

RESUMO

Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.


Assuntos
Farmacorresistência Bacteriana , Infecções Respiratórias , Animais , Infecções Respiratórias/veterinária , Infecções Respiratórias/microbiologia , Infecções Respiratórias/diagnóstico , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/veterinária , Infecções Bacterianas/microbiologia , Infecções Bacterianas/diagnóstico , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Metagenômica , Humanos , Antibacterianos/farmacologia
4.
Front Microbiol ; 15: 1386319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779502

RESUMO

Introduction: Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods: This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results: Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion: By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.

5.
Environ Microbiol Rep ; 13(5): 720-727, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34236147

RESUMO

Biobeds are agriculture-based bioremediation tools used to safely contain and microbially degrade on-farm pesticide waste and rinsate, thereby reducing the negative environmental impacts associated with pesticide use. While these engineered ecosystems demonstrate efficient pesticide removal, the microbiomes in these environments remain largely understudied both taxonomically and functionally. This study used metagenomic and metatranscriptomic techniques to characterize the microbial community in a two-cell Canadian biobed system before and after a field season of pesticide application. These culture-independent approaches identified an enrichment of xenobiotic-degrading bacteria, such as Afipia, Sphingopyxis and Pseudomonas, and enrichment and transcription of xenobiotic-degrading genes, such as peroxidases, oxygenases, and hydroxylases, among others; we were able to directly link the transcription of these genes to Pseudomonas, Oligotropha, Mesorhizobium, Rhodopseudomonas, and Stenotrophomonas taxa.


Assuntos
Ecossistema , Xenobióticos , Bactérias/genética , Bactérias/metabolismo , Canadá , Pradaria , Xenobióticos/metabolismo
6.
Front Microbiol ; 11: 267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174897

RESUMO

Manufactured Zn oxide nanoparticle (ZnO-NP) are extensively used world-wide in personal care and industrial products and are important contaminants of aquatic environments. To understand the overall impact of ZnO-NP contamination on aquatic ecosystems, investigation of their toxicity on aquatic biofilms is of particular consequence, given biofilms are known sinks for NP contaminants. In order to assess alterations in the functional activity of river microbial biofilm communities as a result of environmentally-relevant ZnO-NP exposure, biofilms were exposed to ionic zinc salt or ZnOPs that were uncoated (hydrophilic), coated with silane (hydrophobic) or stearic acid (lipophilic), at a total concentration of 188 µg l-1 Zn. ICP-MS analyses of biofilms indicated ZnO-NP concentrated in the biofilms, with hydrophilic, hydrophobic, and lipophilic treatments reaching 0.310, 0.250, and 0.220 µg Zn cm-2 of biofilm, respectively, while scanning transmission X-ray microspectroscopy (STXM) analyses of biofilms confirmed that Zn was extensively- and differentially-sorbed to biofilm material. Microbial community composition, based on taxonomic affiliation of mRNA sequences and enumeration of protozoa and micrometazoa, was not affected by these treatments, and the total transcriptional response of biofilms to all experimental exposures was not indicative of a global toxic-response, as cellular processes involved in general cell maintenance and housekeeping were abundantly transcribed. Transcripts related to major biological processes, including photosynthesis, energy metabolism, nitrogen metabolism, lipid metabolism, membrane transport, antibiotic resistance and xenobiotic degradation, were differentially expressed in Zn-exposures relative to controls. Notably, transcripts involved in nitrogen fixation and photosynthesis were decreased in abundance in response to Zn-exposure, while transcripts related to lipid degradation and motility-chemotaxis were increased, suggesting a potential role of Zn in biofilm dissolution. ZnO-NP and ionic Zn exposures elicited generally overlapping transcriptional responses, however hydrophilic and hydrophobic ZnO-NPs induced a more distinct effect than that of lipophilic ZnO-NPs, which had an effect similar to that of low ionic Zn exposure. While the physical coating of ZnO-NP may not induce specific toxicity observable at a community level, alteration of ecologically important processes of photosynthesis and nitrogen cycling are an important potential consequence of exposure to ionic Zn and Zn oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA