Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 112: 2-11, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27593501

RESUMO

Mushrooms, such as Schizophyllum commune, have a specific odor. Whether this is linked to mating, prerequisite for mushroom formation, or also found in monokaryotic, unmated strains, was investigated with a comprehensive study on the transcriptome and proteome of this model organism. Mating interactions were investigated using a complete, cytosolic proteome map for unmated, monokaryotic, as well as for mated, dikaryotic mycelia. The regulations of the proteome were compared to transcriptional changes upon mating and to changes in smell by volatilome studies. We could show a good overlap between proteome and transcriptome data, but extensive posttranslational regulation was identified for more than 80% of transcripts. This suggests down-stream regulation upon interaction of mating partners and formation of the dikaryon that is competent to form fruiting bodies. The volatilome was shown to respond to mating by a broader spectrum of volatiles and increased emission of the mushroom smell molecules 3-octanone and 1-octen-3-ol, as well as ethanol and ß-bisabolol in the dikaryon. Putatively involved biosynthetic proteins like alcohol dehydrogenases, Ppo-like oxygenases, or sesquiterpene synthases showed correlating transcriptional regulation depending on either mono- or dikaryotic stages.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Proteoma/análise , Schizophyllum/crescimento & desenvolvimento , Schizophyllum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Interações Microbianas , Recombinação Genética , Schizophyllum/genética
2.
Eukaryot Cell ; 12(6): 941-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23606288

RESUMO

Fungi have been used as model systems to define general processes in eukaryotes, for example, the one gene-one enzyme hypothesis, as well as to study polar growth or pathogenesis. Here, we show a central role for the regulator protein Ras in a mushroom-forming, filamentous basidiomycete linking growth, pheromone signaling, sexual development, and meiosis to different signal transduction pathways. ras1 and Ras-specific gap1 mutants were generated and used to modify the intracellular activation state of the Ras module. Transformants containing constitutive ras1 alleles (ras1(G12V) and ras1(Q61L)), as well as their compatible mating interactions, did show strong phenotypes for growth (associated with Cdc42 signaling) and mating (associated with mitogen-activated protein kinase signaling). Normal fruiting bodies with abnormal spores exhibiting a reduced germination rate were produced by outcrossing of these mutant strains. Homozygous Δgap1 primordia, expected to experience increased Ras signaling, showed overlapping phenotypes with a block in basidium development and meiosis. Investigation of cyclic AMP (cAMP)-dependent protein kinase A indicated that constitutively active ras1, as well as Δgap1 mutant strains, exhibit a strong increase in Tpk activity. Ras1-dependent, cAMP-mediated signal transduction is, in addition to the known signaling pathways, involved in fruiting body formation in Schizophyllum commune. To integrate these analyses of Ras signaling, microarray studies were performed. Mutant strains containing constitutively active Ras1, deletion of RasGap1, or constitutively active Cdc42 were characterized and compared. At the transcriptome level, specific regulation highlighting the phenotypic differences of the mutants is clearly visible.


Assuntos
Carpóforos/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Morfogênese/genética , Schizophyllum/genética , Esporos Fúngicos/genética , Proteínas ras/genética , Alelos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , AMP Cíclico/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Meiose/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Schizophyllum/crescimento & desenvolvimento , Schizophyllum/metabolismo , Atrativos Sexuais/biossíntese , Atrativos Sexuais/genética , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
3.
Eukaryot Cell ; 11(5): 571-89, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22210832

RESUMO

In this study, we undertook a functional characterization and transcriptome analysis that enabled a comprehensive study of the mating type loci of the mushroom Schizophyllum commune. Induced expression of both the bar2 receptor and the bap2(2) pheromone gene within 6 to 12 h after mates' contact was demonstrated by quantitative real-time PCR. Similar temporal expression patterns were confirmed for the allelic bbr1 receptor and bbp1 pheromone-encoding genes by Northern hybridization. Interestingly, the fusion of clamp connections to the subterminal cell was delayed in mating interactions in which one of the compatible partners expressed the bar2 receptor with a truncated C terminus. This developmental delay allowed the visualization of a green fluorescent protein (Gfp)-labeled truncated receptor at the cell periphery, consistent with a localization in the plasma membrane of unfused pseudoclamps. This finding does not support hypotheses envisioning a receptor localization to the nuclear membrane facilitating recognition between the two different nuclei present in each dikaryotic cell. Rather, Gfp fluorescence observed in such pseudoclamps indicated a role of receptor-pheromone interaction in clamp fusion. Transcriptome changes associated with mating interactions were analyzed in order to identify a role for pheromone-receptor interactions. We detected a total of 89 genes that were transcriptionally regulated in a mating type locus A-dependent manner, employing a cutoff of 5-fold changes in transcript abundance. Upregulation in cell cycle-related genes and downregulation of genes involved in metabolism were seen with this set of experiments. In contrast, mating type locus B-dependent transcriptome changes were observed in 208 genes, with a specific impact on genes related to cell wall and membrane metabolism, stress response, and the redox status of the cell.


Assuntos
Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Schizophyllum/genética , Alelos , Northern Blotting , Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Loci Gênicos , Proteínas de Fluorescência Verde/metabolismo , Membrana Nuclear/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Schizophyllum/crescimento & desenvolvimento , Schizophyllum/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcriptoma
4.
J Fungi (Basel) ; 7(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065484

RESUMO

The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA