Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theranostics ; 13(12): 4217-4228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554280

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Lipídeos
2.
Photoacoustics ; 21: 100240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520652

RESUMO

Proton radiotherapy has the potential to provide state-of-the-art dose conformality in the tumor area, reducing possible adverse effects on surrounding organs at risk. However, uncertainties in the exact location of the proton Bragg peak inside the patient prevent this technique from achieving full clinical potential. In this context, in vivo verification of the range of protons in patients is key to reduce uncertainty margins. Protoacoustic range verification employs acoustic pressure waves generated by protons due to the radio-induced thermoacoustic effect to reconstruct the dose deposited in a patient during proton therapy. In this paper, we propose to use the a priori knowledge of the shape of the proton dose distribution to create a dictionary with the expected ultrasonic signals at predetermined detector locations. Using this dictionary, the reconstruction of deposited dose is performed by matching pre-calculated dictionary acoustic signals with data acquired online during treatment. The dictionary method was evaluated on a single-field proton plan for a prostate cancer patient. Dose calculation was performed with the open-source treatment planning system matRad, while acoustic wave propagation was carried out with k-Wave. We studied the ability of the proposed dictionary method to detect range variations caused by anatomical changes in tissue density, and alterations of lateral and longitudinal beam position. Our results show that the dictionary-based protoacoustic method was able to identify the changes in range originated by all the alterations introduced, with an average accuracy of 1.4 mm. This procedure could be used for in vivo verification, comparing the measured signals with the precalculated dictionary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA