Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Vaccine ; 41(6): 1265-1273, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642628

RESUMO

A malaria vaccine with high efficacy and capable of inducing sterile immunity against malaria within genetically diverse populations is urgently needed to complement ongoing disease control and elimination efforts. Parasite-specific IFN-γ and granzyme B-secreting CD8 + T cells have been identified as key mediators of protection and the rapid identification of malaria antigen targets that elicit these responses will fast-track the development of simpler, cost-effective interventions. This study extends our previous work which used peripheral blood mononuclear cells (PBMCs) from adults with life-long exposure to malaria parasites to identify immunodominant antigen-specific peptide pools composed of overlapping 15mer sequences spanning full length proteins of four malarial antigens. Our current study aimed to identify CD8 + T cell epitopes within these previously identified positive peptide pools. Cryopreserved PBMCs from 109 HLA-typed subjects were stimulated with predicted 9-11mer CD8 + T cell epitopes from P. falciparum circumsporozoite protein (CSP), apical membrane antigen 1 (AMA1), thrombospondin related anonymous protein (TRAP) and cell traversal for ookinetes and sporozoites (CelTOS) in FluoroSpot assays. A total of 135 epitopes out of 297 tested peptides from the four antigens were experimentally identified as positive for IFN-γ and/or granzyme B production in 65 of the 109 subjects. Forty-three of 135 epitopes (32 %) were promiscuous for HLA binding, with 31 of these promiscuous epitopes (72 %) being presented by HLA alleles that fall within at least two different HLA supertypes. Furthermore, about 52 % of identified epitopes were conserved when the respective sequences were aligned with those from 16 highly diverse P. falciparum parasite strains. In summary, we have identified a number of conserved epitopes, immune responses to which could be effective against multiple P. falciparum parasite strains in genetically diverse populations.


Assuntos
Vacinas Antimaláricas , Malária , Adulto , Humanos , Granzimas , Epitopos de Linfócito T , Proteínas de Protozoários , Plasmodium falciparum , Leucócitos Mononucleares , Antígenos de Protozoários , Peptídeos , Biomarcadores
2.
Front Cell Infect Microbiol ; 12: 901433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811678

RESUMO

Sepsis defined as a dysregulated immune response is a major cause of morbidity in children. In sub-Saharan Africa, the clinical features of sepsis overlap with other frequent infections such as malaria, thus sepsis is usually misdiagnosed in the absence of confirmatory tests. Therefore, it becomes necessary to identify biomarkers that can be used to distinguish sepsis from other infectious diseases. We measured and compared the plasma levels of 18 cytokines (Th1 [GM-CSF, IFN-γ, TNF-α, IL-1ß, 1L-2, IL-6, IL-8, IL-12/IL-23p40, IL-15], Th2[IL-4, IL-5, IL-13), Th17 [IL17A], Regulatory cytokine (IL-10) and 7 chemokines (MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, RANTES/CCL5, Eotaxin/CCL11, MIG/CXCL9 and IP-10/CXCL10 using the Human Cytokine Magnetic 25-Plex Panel in plasma samples obtained from children with sepsis, clinical malaria and other febrile conditions. Children with sepsis had significantly higher levels of IL-1ß, IL-12 and IL-17A compared to febrile controls but lower levels of MIP1-ß/CCL4, RANTES/CCL5 and IP10/CXCL10 when compared to children with malaria and febrile controls. Even though levels of most inflammatory responses were higher in malaria compared to sepsis, children with sepsis had a higher pro-inflammatory to anti-inflammatory ratio which seemed to be mediated by mostly monocytes. A principal component analysis and a receiver operator characteristic curve analysis, identified seven potential biomarkers; IL-1ß, IL-7, IL-12, IL-1RA, RANTES/CCL5, MIP1ß/CCL4 and IP10/CXCL10 that could discriminate children with sepsis from clinical malaria and other febrile conditions. The data suggests that sepsis is associated with a higher pro-inflammatory environment. These pro-inflammatory cytokines/chemokines could further be evaluated for their diagnostic potential to differentiate sepsis from malaria and other febrile conditions in areas burdened with infectious diseases.


Assuntos
Citocinas , Sepse , Biomarcadores , Quimiocina CCL5 , Quimiocina CXCL10 , Criança , Diagnóstico Diferencial , Humanos , Interleucina-12 , Sepse/diagnóstico
3.
PLoS One ; 16(4): e0249936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886601

RESUMO

Detection of antibody reactivity to appropriate, specific parasite antigens may constitute a sensitive and cost-effective alternative to current tools to monitor malaria transmission across different endemicity settings. This study aimed to determine the suitability of IgG responses to a number of P. falciparum antigens as markers of transmission intensity and pattern. Antibody responses to multiple malaria antigens were determined in 905 participants aged 1-12 years from three districts with low (Keta), medium (Hohoe) and high (Krachi) transmission intensity in the Volta region of Ghana. Blood film microscopy slides and dry blood spots (DBS) were obtained for parasitaemia detection and antibody measurement, respectively. Sera were eluted from DBS and levels of IgG specific for 10 malaria antigens determined by a multiplex assay. Results were compared within and among the districts. Total IgG responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, and PfRh2a and PfRh2b were higher in Krachi than in Hohoe and Keta. Seroprevalence of IgG specific for MSPDBLLeucine, RON4, and PfRh2b were also highest in Krachi. Responses to RALP-1, PfRh2a and PfRh2b were associated with patent but asymptomatic parasitaemia in Keta, while responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, Rh2-2030, and PfRh2b were associated with parasite carriage in Hohoe, but not in Krachi. Using ROC analysis, only PfRh2b was found to predict patent, but asymptomatic, parasitaemia in Keta and Hohoe. Antibody breadth correlated positively with age (r = 0.29, p<0.0001) and parasitaemia (ß = 3.91; CI = 1.53 to 6.29), and medium to high transmission (p<0.0001). Our findings suggest differences in malaria-specific antibody responses across the three transmission zones and that PfRh2b has potential as a marker of malaria transmission intensity and pattern. This could have implications for malaria control programs and vaccine trials.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos Transversais , Feminino , Gana , Humanos , Imunoglobulina G/sangue , Lactente , Malária Falciparum/imunologia , Masculino , Curva ROC , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA