Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108599

RESUMO

Previous studies demonstrated that enzymatic hydrolysis enhances wheat bran (WB) biological properties. This study evaluated the immunostimulatory effect of a WB hydrolysate (HYD) and a mousse enriched with HYD (MH) before and after in vitro digestion on murine and human macrophages. The antiproliferative activity of the harvested macrophage supernatant on colorectal cancer (CRC) cells was also analyzed. MH showed significantly higher content than control mousse (M) in soluble poly- and oligosaccharides (OLSC), as well as total soluble phenolic compounds (TSPC). Although in vitro gastrointestinal digestion slightly reduced the TSPC bioaccessibility of MH, ferulic acid (FA) levels remained stable. HYD showed the highest antioxidant activity followed by MH, which demonstrated a greater antioxidant activity before and after digestion as compared with M. RAW264.7 and THP-1 cells released the highest amounts of pro-inflammatory cytokines after being treated with 0.5 mg/mL of digested WB samples. Treatment with digested HYD-stimulated RAW264.7 supernatant for 96 h showed the most anticancer effect, and spent medium reduced cancer cell colonies more than direct WB sample treatments. Although a lack of inner mitochondrial membrane potential alteration was found, increased Bax:Bcl-2 ratio and caspase-3 expression suggested activation of the mitochondrial apoptotic pathway when CRC cells were treated with macrophage supernatants. Intracellular reactive oxygen species (ROS) were positively correlated with the cell viability in CRC cells exposed to RAW264.7 supernatants (r = 0.78, p < 0.05) but was not correlated in CRC cells treated with THP-1 conditioned media. Supernatant from WB-stimulated THP-1 cells may be able to stimulate ROS production in HT-29 cells, leading to a decrease of viable cells in a time-dependent manner. Therefore, our present study revealed a novel anti-tumour mechanism of HYD through the stimulation of cytokine production in macrophages and the indirect inhibition of cell proliferation, colony formation, and activation of pro-apoptotic proteins expression in CRC cells.


Assuntos
Antioxidantes , Fibras na Dieta , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Fibras na Dieta/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Proliferação de Células , Apoptose
2.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500548

RESUMO

In this study, the comprehensive chemical characterization of red lentil hulls obtained from the industrial production of football and split lentils was described. The lentil hulls were rich in dietary fiber (78.43 g/100 g dry weight with an insoluble to soluble fiber ratio of 4:1) and polyphenols (49.3 mg GAE/g dry weight, of which 55% was bound phenolics), which revealed the suitability of this lentil by-product as a source of bioactive compounds with recognized antioxidant and prebiotic properties. The release of oligosaccharides and phenolic compounds was accomplished by enzymatic hydrolysis, microwave treatment and a combination of both technologies. The key role played by the selection of a suitable enzymatic preparation was highlighted to maximize the yield of bioactive compounds and the functional properties of the lentil hull hydrolysates. Out of seven commercial preparations, the one with the most potential for use in a commercial context was Pectinex® Ultra Tropical, which produced the highest yields of oligosaccharides (14 g/100 g lentil hull weight) and free phenolics (45.5 mg GAE/100 g lentil hull weight) and delivered a four-fold increase in terms of the original antioxidant activity. Finally, this enzyme was selected to analyze the effect of a microwave-assisted extraction pretreatment on the yield of enzymatic hydrolysis and the content of free phenolic compounds and oligosaccharides. The integrated microwave and enzymatic hydrolysis method, although it increased the solubilization yield of the lentil hulls (from 25% to 34%), it slightly decreased the content of oligosaccharides and proanthocyanidins and reduced the antioxidant activity. Therefore, the enzymatic hydrolysis treatment alone was more suitable for producing a lentil hull hydrolysate enriched in potential prebiotics and antioxidant compounds.


Assuntos
Lens (Planta) , Lens (Planta)/química , Antioxidantes/química , Fenóis/análise , Oligossacarídeos/química , Fibras na Dieta/análise , Prebióticos
3.
Plant Foods Hum Nutr ; 77(2): 317-318, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334036

RESUMO

Technologies such as UV-A radiation applied to sprouted sorghum can stimulate the synthesis or release of phenolic compounds. Since the optimal conditions for stimulating the formation of these compounds in sorghum sprouts are unknown, we used the response surface methodology to identify the optimal conditions of irradiation duration and intensity to obtain the highest free phenol content and antioxidant activity in sprouted sorghum. The results showed that, compared with nonirradiated sorghum sprouts, sprouts irradiated under the optimal duration of 11.7 h and the optimal intensity of 5.4 µW/cm2 had a significantly higher phenol content (26.3%) and antioxidant activity as measured by DPPH (28.3%) and TEAC (21.1%) assays. Our findings suggest that UV-A radiation can help develop sorghum sprouts with high biological potential that can be used to produce healthy foods for human consumption.


Assuntos
Sorghum , Antioxidantes/análise , Antioxidantes/farmacologia , Grão Comestível/química , Fenol/análise , Fenóis/análise , Sorghum/química
4.
Plant Foods Hum Nutr ; 70(4): 401-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433888

RESUMO

The aim of this study was to investigate the application of elicitors (500 µM ascorbic acid, 50 µM folic acid, 5 mM glutamic acid and 50 ppm chitosan in 5 mM glutamic acid) during lentil germination up to 8 days as a strategy to increase germination rate and to enhance the accumulation of γ-aminobutyric acid (GABA) and phenolic compounds. The effect of elicitation on the protein profile and antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of sprouted lentils was also evaluated. The application of elicitors did not negatively affect the germination yield of lentils and no significant changes on the protein pattern of lentils germinated in the presence of elicitors were observed. Chitosan/glutamic acid increased by 1.6-fold the GABA content in lentil sprouts, whilst ascorbic and folic acids as well as chitosan/glutamic acid were highly effective to enhance the total content of phenolic compounds and the antioxidant activity of sprouted lentils. All elicited lentil sprouts showed ability to inhibit ACE activity (IC50: 9.5-11.9 µg peptides/mL). Therefore, elicitation can be considered a promising approach to improve the content of compounds with antioxidant and potential antihypertensive activities in lentil sprouts.


Assuntos
Anti-Hipertensivos/análise , Antioxidantes/análise , Germinação/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Plântula/química , Sementes/crescimento & desenvolvimento , Inibidores da Enzima Conversora de Angiotensina/análise , Ácido Ascórbico/farmacologia , Ácido Fólico/farmacologia , Ácido Glutâmico/farmacologia , Fenóis/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Ácido gama-Aminobutírico/análise
5.
Anal Bioanal Chem ; 406(30): 7949-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25311192

RESUMO

The use of enriched Se isotopes as tracers has provided important information on Se metabolism. However, selenium isotopes are expensive and difficult to obtain. A simple and cheap strategy based on the production of [(77)Se]-methylselenocysteine ([(77)Se]-MeSeCys) when preparing sauerkraut in the presence of [(77)Se]-selenite was developed. The resulting [(77)Se]-MeSeCys was used for evaluating the metabolic transformation of MeSeCys in Wistar rats, by feeding them with an AIN-93 M diet containing 20 % sauerkraut enriched in [(77)Se]-MeSeCys. Organs (liver, kidney, brain, testicles, and heart) were obtained after seven days of treatment and subjected to total selenium and selenium-speciation analysis by high-performance liquid chromatography coupled with isotope-dilution-analysis inductively-coupled-plasma mass spectrometry (HPLC-IDA-ICP-MS). Analysis of (77)Se-labeled organs revealed a prominent increase (more than 100 % Se-level enhancement) of selenium in the kidney and heart, whereas in the liver selenium concentration only increased by up to 20 % and it remained constant in the brain and testicles. (77)Se-enriched-sauerkraut supplementation does not alter the concentration of other essential elements in comparison to controls except for in the heart and kidney, in which selenium was positively correlated with Mg, Zn, Cu, and Mo. HPLC-ICP-MS analysis of hydrolyzed extracts after carbamidomethylation of the (77)Se-labeled organs revealed the presence of [(77)Se]-SeCys and an unknown Se-containing peak, the identity of which could not be verified by electrospray-ionization (ESI)-MS-MS. Low amounts of [(77)Se]-MeSeCys were found in (77)Se-labeled liver and kidney extracts, suggesting the incorporation of this selenium species in its intact form.


Assuntos
Ácido Selenioso/química , Selênio/análise , Selênio/metabolismo , Selenocisteína/análogos & derivados , Ração Animal , Animais , Cromatografia Líquida de Alta Pressão , Rim/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Miocárdio/metabolismo , Ratos , Ratos Wistar , Selenocisteína/análise , Selenocisteína/síntese química , Selenocisteína/metabolismo
6.
Plant Foods Hum Nutr ; 69(3): 261-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086701

RESUMO

Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.


Assuntos
Fibras na Dieta/análise , Germinação , Valor Nutritivo , Oryza/química , Ácido Fítico/análise , Carboidratos da Dieta/análise , Gorduras na Dieta/análise , Proteínas Alimentares/análise , Manipulação de Alimentos/métodos , Hidrólise
7.
Food Chem ; 447: 138887, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492299

RESUMO

The impact of different pressure levels in the HHP-assisted hydrolysis by Alcalase of quinoa proteins on the catalytic efficiency, peptide release, phenolic compounds content, and biological activities was investigated. The protein profile (SDS-PAGE) showed a more extensive peptide breakdown for the HHP-assisted proteolysis at 300-400 MPa, which was confirmed by the higher extent of hydrolysis and peptide concentration. Quinoa protein hydrolysates (QPH) produced at 200 and 300 MPa exhibited higher total phenolic contents and antioxidant activities (methanol-acetone and aqueous extracts) when compared to the non-hydrolyzed (QPI) and non-pressurized hydrolyzed samples. Kaempferol dirhamnosyl-galactopyranoside was the prevalent phenolic compound in those samples, increasing total flavonoids by 1.8-fold over QPI. The QPH produced at 300 MPa inhibited ACE more effectively, exhibiting the greatest anti-hypertensive potential, along with the presence of several ACE-inhibitory peptides. The peptide sequences GSHWPFGGK, FSIAWPR, and PWLNFK presented the highest Peptide Ranker scores and were predicted to have ACE inhibitory, DPP-IV inhibitory, and antioxidant activities. Mild pressure levels were effective in producing QPH with enhanced functionality due to the effects of bioactive soluble phenolics and low molecular weight peptides.


Assuntos
Antioxidantes , Chenopodium quinoa , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/química
8.
Food Sci Technol Int ; 19(2): 133-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23291831

RESUMO

The consumption of dehydrated vegetables, which provides an important source of vitamins, is increasing worldwide. Dehydrated vegetables are located on non-refrigerated shelves in food shops and, therefore, it is of utmost importance to understand the modifications that take place in the content of these labile micronutrients at the ambient conditions currently found in food shops. The present study discusses the effect of storage for 3, 6, 9 and 12 months on the content of thiamin and vitamin C in different commercial and pilot plant dehydrated garlic, onions, potatoes and carrots in darkness at room temperature under vacuum conditions. The content of ß-carotene under these conditions was also studied in dehydrated carrots. Thiamin remained stable over the first 3 months of storage (∼90% retention), while long-term storage led to larger losses (retention of 85% in garlic and 45% in commercial carrots after 12 months of storage). The content of vitamin C drastically decreased during the storage period and even disappeared in some dried onions and carrots following 12 months of storage. Storage for 6 months at ambient conditions preserved 80-90% of the ß-carotene content in dehydrated vegetables, while long-term storage led to significant ß-carotene degradation (retentions between 43 and 81%). These results suggest that vitamins are gradually lost during storage at the practical conditions in food shops and will thus provide relevant information concerning dried vegetables, so manufacturers may calculate shelf life under established storage conditions.


Assuntos
Alimentos em Conserva/análise , Verduras/química , Vitaminas/análise , Ácido Ascórbico/análise , Daucus carota/química , Dessecação , Estabilidade de Medicamentos , Conservação de Alimentos/métodos , Alho/química , Cebolas/química , Solanum tuberosum/química , Tiamina , Fatores de Tempo , beta Caroteno/análise
9.
Foods ; 11(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35804772

RESUMO

Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting.

10.
Foods ; 11(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37431004

RESUMO

The tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile and physicochemical properties of corn extrudates as influenced by the complete or partial replacement by sprouted quinoa (Chenopodium quinoa Willd) and cañihua (Chenopodium pallidicaule Aellen) were investigated. A simplex centroid mixture design was used to study the effects of formulation on nutritional and physicochemical properties of extrudates, and a desirability function was applied to identify the optimal ingredient ratio in flour blends to achieve desired nutritional, texture and color goals. Partial incorporation of sprouted quinoa flour (SQF) and cañihua flour (SCF) in corn grits (CG)-based extrudates increased phytic acid (PA), total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA) and oxygen radical antioxidant activity (ORAC) of the extrudates. Sprouted grain flour usually results in an deleterious effect physicochemical properties of extrudates, but the partial mixture of CG with SQF and SCF circumvented the negative effect of germinated flours, improving technological properties, favoring the expansion index and bulk density and increasing water solubility. Two optimal formulations were identified: 0% CG, 14% SQF and 86% SCF (OPM1) and 24% CG, 17% SQF and 59% SCF (OPM2). The optimized extrudates showed a reduced amount of starch and remarkably higher content of total dietary fiber, protein, lipids, ash, PA, TSPC, GABA and ORAC as compared to those in 100% CG extrudates. During digestion, PA, TSPC, GABA and ORAC showed good stability in physiological conditions. Higher antioxidant activity and amounts of bioaccessible TSPC and GABA were found in OPM1 and OPM2 digestates as compared to those in 100% CG extrudates.

11.
Foods ; 10(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440811

RESUMO

This study investigates the use of sprouted oat flour as a substrate to develop a novel gluten-free beverage by fermentation with a probiotic (Lactobacillus plantarum WCFS1) starter culture. Physicochemical, microbiological, nutritional and sensory properties of sprouted oat fermented beverage (SOFB) were characterized. After fermentation for 4 h, SOFB exhibited an acidity of 0.42 g lactic acid/100 mL, contents of lactic and acetic acids of 1.6 and 0.09 g/L, respectively, and high viable counts of probiotic starter culture (8.9 Log CFU/mL). Furthermore, SOFB was a good source of protein (1.7 g/100 mL), ß-glucan (79 mg/100 mL), thiamine (676 µg/100 mL), riboflavin (28.1 µg/100 mL) and phenolic compounds (61.4 mg GAE/100 mL), and had a high antioxidant potential (164.3 mg TE/100 mL). Spoilage and pathogenic microorganisms were not detected in SOFB. The sensory attributes evaluated received scores higher than 6 in a 9-point hedonic scale, indicating that SOFB was well accepted by panelists. Storage of SOFB at 4 °C for 20 days maintained L. plantarum viability and a good microbial quality and did not substantially affect ß-glucan content. SOFB fulfils current consumer demands regarding natural and wholesome plant-based foods.

12.
Food Chem ; 338: 127972, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932082

RESUMO

This study is aimed to produce and characterize a novel gluten-free ingredient from oat through sprouting at 18 °C for 96 h. The nutritional and bioactive properties as well as key enzymatic activities were studied in sprouted oat powder and compared with those of oat grain powder (control). Sprouted oat powder was an excellent source of protein (10.7%), ß-glucan (2.1%), thiamine (687.1 µg/100 g), riboflavin (218.4 µg/100 g), and minerals (P, K, Mg and Ca), and presented better amino acid and fatty acid compositions and levels of γ-aminobutyric acid (54.9 mg/100 g), free phenolics (507.4 mg GA/100 g) and antioxidant capacity (1744.3 mg TE/100 g) than control. Enhanced protease and α-amylase and reduced lipase activities were observed in sprouted oat powder, which are promising features to improve its nutritional, sensorial and health-promoting properties. These results support the use of sprouted oat powder as a promising gluten-free functional ingredient.


Assuntos
Avena/química , Dieta Livre de Glúten , Valor Nutritivo , Avena/enzimologia , Avena/crescimento & desenvolvimento , Compostos Fitoquímicos/análise
13.
Food Chem ; 360: 130032, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34022520

RESUMO

Five fettuccini formulations containing 5% (5MSP), 10% (10MSP), 15% (15MSP), 20% (20MSP), and 30% (30MSP) of moringa sprout powder (MSP) were produced aimed at improving the nutritional and bioactive profile of conventional pasta. A gradual increase of protein, lipids, fiber and mineral content was observed in fettuccine as the MSP amount increased, while carbohydrates were reduced. MSP-addition also increased the levels of thiamine, riboflavin, γ- aminobutyric acid, glucosinolates and the antioxidant activity in pasta. All pasta doughs showed similar rheological parameters. Textural properties decreased after MSP inclusion, but the values obtained were close to those of control. Incorporation of MSP up to 10% did not modify substantially the sensory attributes of fettuccine, but higher amounts had a negative impact. Thus, addition of MSP up to 10% is a promising technological approach to improve the nutritional and functional properties of pasta without compromising consumer acceptance.


Assuntos
Farinha/análise , Moringa/química , Valor Nutritivo , Pós , Antioxidantes , Culinária , Fibras na Dieta/análise , Glucosinolatos/análise , Humanos , Reologia , Ácido gama-Aminobutírico/análise
14.
Front Plant Sci ; 12: 754287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759946

RESUMO

Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.

15.
Foods ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430507

RESUMO

Bran, a byproduct still mainly used for animal feed, is receiving increased attention as potential ingredient for a healthier diet. The aim of this study was to characterize and evaluate the nutritional and antioxidant properties of wheat and oat bran in order to promote their use as nutraceutical ingredients in flour and/or other products. The effects of grain (wheat vs. oat) and milling fraction (whole grain vs. bran) on the phenolic profile (free vs. bound phenolics), antioxidant and nutrient profiles, and glycemic index were evaluated. Differences in antioxidant capacity through different methodologies between grain and bran were observed, supporting a higher in vitro antioxidant capacity of the whole grain than that of the refined flours, which lack the bran fraction. The highest RACI (Relative Antioxidant Capacity Index) corresponded to wheat bran bound fraction, which showed the highest concentration of ferulic acid and correlation with antioxidant parameters tested. The in vitro glycemic index of the bran fractions was reduced, as compared with grain, with lower values found for wheat. The results support the important benefits of the polyphenols linked to fiber and the importance to develop methods to increase bioavailability of these compounds, which would promote WB use as nutraceutical ingredient.

16.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208721

RESUMO

Wheat bran (WB) is a byproduct from the milling industry that contains bioactive compounds beneficial to human health. The aim of this work was on the one hand, increasing extractability of antioxidant and anti-inflammatory compounds (specifically ferulic acid, FA), through enzymatic hydrolysis combined with hydrothermal treatment (HT) and high hydrostatic pressure (HHP). On the other hand, enhancing the stability of final ingredient applying spray-drying (SPD) and microencapsulation (MEC). The use of HT increased FA, total phenolics (TP), and antioxidant capacity (AC) in WB hydrolysates, regardless the HT duration. However, the HT tested (30 min, HT30) produced a loss in anti-inflammatory activity (AIA). The combination of HT (15 min, HT15) with HHP increased AIA of the WB. SPD enhanced the TP yield in WB with no significant effect of inlet temperature (up to 140 °C) on phenolic profile mainly composed of trans-FA and smaller amounts of cis-FA and apigenin diglucosides. SPD caused a temperature-dependent increase in AC (160 °C > 140 °C > 130 °C). SPD inlet temperatures affected total solids yield (from 22 to 36%), with the highest values at 140 °C. The use of HHP in combination with HT resulted in >2-fold increase in total solids yield.

17.
Foods ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34945649

RESUMO

There is a lack of information about consumer understanding of functional foods. Sprouts provide beneficial compounds that can help counteract chronic noncommunicable diseases. The population of a region in Northwestern Mexico has a high prevalence of chronic degenerative disease, and there is a need to promote strategies to increase the consumption of foods that provide health benefits, including sprouts. However, there is a lack of information regarding the sale, consumption and perception of sprouts' healthy properties. A computer-assisted web-based survey (CAWI) was developed and distributed through social media to understand consumer knowledge of these foods' health effects and their consumption. The survey of people with diverse sociodemographic profiles indicated a 1-3 times per week consumption and they knew the health benefits of consuming sprouts. A total of 82% of respondents were conscious that sprout consumption could prevent chronic diseases, which may be related to education level (χ2: 0.001, p < 0.05). In order to expand on our findings, it is important to investigate the communication strategies used by sprout manufacturers, dieticians, nutritionists and health professionals about the health benefits of sprout products to promote their consumption.

18.
Front Plant Sci ; 12: 790898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003179

RESUMO

To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.

19.
Nutrients ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34444682

RESUMO

The safety and health effects for celiac people of a novel beverage (SOFB) developed from sprouted oat flour by fermentation with Lactobacillus plantarum was explored. In vitro reactivity against anti-gliadin antibodies (AGA) and antioxidant/anti-inflammatory potential of SOFB in RAW 264.7 macrophages and Caco-2 cells were evaluated. Immunoreactivity against AGA and antioxidant activity were not detected in SOFB, but it exhibited significant anti-inflammatory activity. The tolerability and impact of SOFB consumption for 6 months on nutritional status and intestinal microbiota composition were investigated in 10 celiac adults (five treated and five control). SOFB consumption did not adversely affect duodenal mucosa nor the total IgA or anti-tissue transglutaminase antibody (IgA-tTG) levels in celiac participants, but it significantly decreased total cholesterol levels at all sampling times and folic acid levels at the end of the study compared to the placebo beverage. SOFB administration also shifted gut microbiota, leading to a higher relative abundance of some beneficial bacteria including the genera Subdoligranulum, Ruminococcus and Lactobacillus in the SOFB group. This study provides supporting evidence of the safety of health benefits of a novel functional beverage produced from sprouted oat.


Assuntos
Avena , Doença Celíaca/dietoterapia , Alimentos Fermentados , Plântula , Animais , Anti-Inflamatórios , Anticorpos/imunologia , Antioxidantes , Avena/imunologia , Células CACO-2 , Alimento Funcional , Microbioma Gastrointestinal , Gliadina/imunologia , Glutens/análise , Humanos , Imunoglobulina A/análise , Imunoglobulina A/imunologia , Lactobacillus plantarum/metabolismo , Camundongos , Estado Nutricional , Células RAW 264.7
20.
Foods ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945474

RESUMO

Germination is an efficient and natural strategy that allows the modification of the nutritional value and the nutraceutical properties of seeds, enabling one to tailor the process according to its final use. This study aimed at optimization of germination conditions to produce novel lentil flours with improved nutritional and functional features. Response Surface Methodology (RSM) was applied to model the effect of temperature (15-27 °C) and time (1-5 days) on different nutritional and quality parameters of lentil flours including proximate composition, content and profile of fatty acids, content of phytic acid, ascorbic acid and γ-aminobutyric acid (GABA), content and profile of phenolic compounds, antioxidant activity, expected glycemic index (GI) and color during germination. As shown by RSM polynomial models, sprouting promoted the reduction of phytic acid content and enhanced the levels of ascorbic acid, GABA, insoluble phenolic compounds, antioxidant activity and expected GI, and modified the color of the resultant lentil flours. RSM optimization of germination temperature and time using desirability function revealed that the optimal process conditions to maximize the nutritional, bioactive and quality properties of sprouted lentil flours were 21 °C for 3.5 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA