Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioconjug Chem ; 21(2): 372-84, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20121074

RESUMO

We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.


Assuntos
Agonistas do Receptor A3 de Adenosina , Dendrímeros/química , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/farmacologia , Adenosina/química , Alcinos/química , Amidas/química , Animais , Células CHO , Catálise , Linhagem Celular Tumoral , Cobre/química , Cricetinae , Cricetulus , Humanos , Ligantes , Neuroimunomodulação/efeitos dos fármacos , Triazóis/química
2.
Mol Pharmacol ; 76(6): 1341-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19759354

RESUMO

The P2Y14 receptor was initially identified as a G protein-coupled receptor activated by UDP-glucose and other nucleotide sugars. We have developed several cell lines that stably express the human P2Y14 receptor, allowing facile examination of its coupling to native Gi family G proteins and their associated downstream signaling pathways (J Pharmacol Exp Ther 330:162-168, 2009). In the current study, we examined P2Y14 receptor-dependent inhibition of cyclic AMP accumulation in human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells stably expressing this receptor. Not only was the human P2Y14 receptor activated by UDP-glucose, but it also was activated by UDP. The apparent efficacies of UDP and UDP-glucose were similar, and the EC50 values (74, 33, and 29 nM) for UDP-dependent activation of the P2Y14 receptor in HEK293, CHO, and C6 glioma cells, respectively, were similar to the EC50 values (323, 132, and 72 nM) observed for UDP-glucose. UDP and UDP-glucose also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y14 receptor-expressing HEK293 cells but not in wild-type HEK293 cells. A series of analogs of UDP were potent P2Y14 receptor agonists, but the naturally occurring nucleoside diphosphates, CDP, GDP, and ADP exhibited agonist potencies over 100-fold less than that observed with UDP. Two UDP analogs were identified that selectively activate the P2Y14 receptor over the UDP-activated P2Y6 receptor, and these molecules stimulated phosphorylation of ERK1/2 in differentiated human HL-60 promyeloleukemia cells, which natively express the P2Y14 receptor but had no effect in wild-type HL-60 cells, which do not express the receptor. We conclude that UDP is an important cognate agonist of the human P2Y14 receptor.


Assuntos
Inibidores de Adenilil Ciclases , Proteínas de Ligação ao GTP/fisiologia , Agonistas do Receptor Purinérgico P2 , Difosfato de Uridina/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Células CHO , Linhagem Celular , Colforsina/farmacologia , Cricetinae , Cricetulus , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Células HL-60 , Humanos , Receptores Purinérgicos P2 , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia
3.
J Pharmacol Exp Ther ; 330(1): 162-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19339661

RESUMO

Eight G protein-coupled receptors comprise the P2Y receptor family of cell signaling proteins. The goal of the current study was to define native cell signaling pathways regulated by the uridine nucleotide sugar-activated P2Y(14) receptor (P2Y(14)-R). The P2Y(14)-R was stably expressed in human embryonic kidney (HEK) 293 and C6 rat glioma cells by retroviral infection. Nucleotide sugar-dependent P2Y(14)-R activation was examined by measuring inhibition of forskolin-stimulated cAMP accumulation. The effect of P2Y(14)-R activation on mitogen-activated protein kinase signaling also was studied in P2Y(14)-HEK293 cells and in differentiated HL-60 human myeloid leukemia cells. UDP-Glc, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetylglucosamine promoted inhibition of forskolin-stimulated cAMP accumulation in P2Y(14)-HEK293 and P2Y(14)-C6 cells, and this signaling effect was abolished by pretreatment of cells with pertussis toxin. Inhibition of cAMP formation by nucleotide sugars also was observed in direct assays of adenylyl cyclase activity in membranes prepared from P2Y(14)-C6 cells. UDP-Glc promoted concentration-dependent and pertussis toxin-sensitive extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y(14)-HEK293 cells. P2Y(14)-R mRNA was not observed in wild-type HL-60 cells but was readily detected in dimethyl sulfoxide-differentiated cells. Consistent with this observation, no effect of UDP-Glc was observed in wild-type HL-60 cells, but UDP-Glc-promoted pertussis toxin-sensitive activation of ERK1/2 occurred after differentiation. These results illustrate that the human P2Y(14)-R signals through G(i) to inhibit adenylyl cyclase, and P2Y(14)-R activation also leads to ERK1/2 activation. This work also identifies two stable P2Y(14)-R-expressing cell lines and differentiated HL-60 cells as model systems for the study of P2Y(14)-R-dependent signal transduction.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Receptores Purinérgicos P2/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Colforsina/farmacologia , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/biossíntese , Células HL-60 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Ratos , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células Tumorais Cultivadas , Açúcares de Uridina Difosfato/farmacologia
4.
Bioorg Med Chem ; 17(14): 5298-311, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19502066

RESUMO

The P2Y(14) receptor, a nucleotide signaling protein, is activated by uridine-5'-diphosphoglucose 1 and other uracil nucleotides. We have determined that the glucose moiety of 1 is the most structurally permissive region for designing analogues of this P2Y(14) agonist. For example, the carboxylate group of uridine-5'-diphosphoglucuronic acid proved to be suitable for flexible substitution by chain extension through an amide linkage. Functionalized congeners containing terminal 2-acylaminoethylamides prepared by this strategy retained P2Y(14) activity, and molecular modeling predicted close proximity of this chain to the second extracellular loop of the receptor. In addition, replacement of glucose with other sugars did not diminish P2Y(14) potency. For example, the [5'']ribose derivative had an EC(50) of 0.24muM. Selective monofluorination of the glucose moiety indicated a role for the 2''- and 6''-hydroxyl groups of 1 in receptor recognition. The beta-glucoside was twofold less potent than the native alpha-isomer, but methylene replacement of the 1''-oxygen abolished activity. Replacement of the ribose ring system with cyclopentyl or rigid bicyclo[3.1.0]hexane groups abolished activity. Uridine-5'-diphosphoglucose also activates the P2Y(2) receptor, but the 2-thio analogue and several of the potent modified-glucose analogues were P2Y(14)-selective.


Assuntos
Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/metabolismo , Relação Estrutura-Atividade , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia , Uridina Difosfato Glucose/análogos & derivados , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Receptores Purinérgicos P2/química , Fosfolipases Tipo C/metabolismo , Nucleotídeos de Uracila/síntese química
5.
J Pharmacol Exp Ther ; 325(2): 588-94, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18252808

RESUMO

G protein-coupled P2Y receptors (P2Y-R) are activated by adenine and uracil nucleotides. The P2Y(14) receptor (P2Y(14)-R) is activated by at least four naturally occurring UDP sugars, with UDP-glucose (UDP-Glc) being the most potent agonist. With the goal of identifying a competitive antagonist for the P2Y(14)-R, UDP was examined for antagonist activity in COS-7 cells transiently expressing the human P2Y(14)-R and a chimeric Galpha protein that couples Gi-coupled receptors to stimulation of phosphoinositide hydrolysis. UDP antagonized the agonist action of UDP-Glc, and Schild analysis confirmed that the antagonism was competitive (pK(B) = 7.28). Uridine 5'-O-thiodiphosphate also antagonized the human P2Y(14)-R (hP2Y(14)-R) with an apparent affinity similar to that of UDP. In contrast, no antagonist activity was observed with ADP, CDP, or GDP, and other uracil analogs also failed to exhibit antagonist activity. The antagonist activity of UDP was not observed at other hP2Y-R. In contrast to its antagonist action at the hP2Y(14)-R, UDP was a potent agonist (EC(50) = 0.35 muM) at the rat P2Y(14)-R. These results identify the first competitive antagonist of the P2Y(14)-R and demonstrate pharmacological differences between receptor orthologs.


Assuntos
Antagonistas do Receptor Purinérgico P2 , Difosfato de Uridina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Agonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA