Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0100423, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38092664

RESUMO

Darunavir (DRV) is an HIV protease inhibitor commonly used as part of antiretroviral treatment regimens globally for children and adolescents. It requires a pharmacological booster, such as ritonavir (RTV) or cobicistat. To better understand the pharmacokinetics (PK) of DRV in this younger population and the importance of the RTV boosting effect, a population PK substudy was conducted within SMILE trial, where the maintenance of HIV suppression with once daily integrate inhibitor + darunavir/ritonavir in children and adolescents is evaluated. A joint population PK model that simultaneously used total DRV, unbound DRV, and total RTV concentrations was developed. Competitive and non-competitive models were examined to define RTV's influence on DRV pharmacokinetics. Linear and non-linear equations were tested to assess DRV protein binding. A total of 443 plasma samples from 152 adolescents were included in this analysis. Darunavir PK was best described by a one-compartment model first-order absorption and elimination. The influence of RTV on DRV pharmacokinetics was best characterized by ritonavir area under the curve on DRV clearance using a power function. The association of non-linear and linear equations was used to describe DRV protein binding to alpha-1 glycoprotein and albumin, respectively. In our population, simulations indicate that 86.8% of total and unbound DRV trough concentrations were above 0.55 mg/L [10 times protein binding-adjusted EC50 for wild-type (WT) HIV-1] and 0.0243 mg/L (10 times EC90 for WT HIV-1) targets, respectively. Predictions were also in agreement with observed outcomes from adults receiving 800/100 mg DRV/r once a day. Administration of 800/100 mg of DRV/r once daily provides satisfactory concentrations and exposures for adolescents aged 12 years and older.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores da Protease de HIV , Adulto , Criança , Humanos , Adolescente , Darunavir/farmacocinética , Ritonavir/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Sulfonamidas/farmacologia , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/uso terapêutico
4.
J Pharm Biomed Anal ; 248: 116322, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38964167

RESUMO

Cystic fibrosis is one of the most common genetic diseases among caucasian population. This disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding for the CFTR protein. Lumacaftor, elexacaftor, tezacaftor, and ivacaftor were currently used as the treatment to Cystic fibrosis. In this study, we describe a new method for the simultaneous quantification of four molecules: lumacaftor, elexacaftor, tezacaftor, and ivacaftor, alongside two metabolites of ivacaftor, specifically hexyl-methyl ivacaftor and ivacaftor carboxylate by liquid chromatography-tandem mass spectrometry. This method holds significant utility for therapeutic drug monitoring and the optimization of treatments related to CFTR modulators. Molecules were extracted from 100 µL of plasma by a simple method of protein precipitation using acetonitrile. Following extraction, chromatographic separation was carried out by reverse chromatography on a C18 analytical column, using a gradient elution of water (0.05 % formic acid, V/V) and acetonitrile (0.05 % formic acid, V/V). The run time was 7 minutes at a flow rate of 0.5 mL/min. After separation, molecules were detected by electrospray ionization on a Xevo TQD triple-quadrupole-mass-spectrometer (Waters®, Milford, USA). The calibration range were: 0.053-20.000 mg/L for elexacaftor, tezacaftor and lumacaftor, 0.075-14.000 mg/L for ivacaftor, and 0.024-6.500 mg/L for hexyl-methyl ivacaftor and ivacaftor carboxylate. The proposed method underwent throughout validation demonstrating satisfactory precision (inter- and intra-day coefficients of variation less than 14.3 %) and a good accuracy (inter- and intra-day bias ranging between -13.7 % and 14.7 %) for all the analytes. The presented method for the simultaneous quantification of CFTR modulators and their metabolites in human plasma has undergone rigorous validation process yielding good results including strong precision and accuracy for all analytes. This method has been effectively used in routine analytical analysis and clinical investigations within our laboratory.

5.
Clin Pharmacokinet ; 63(3): 333-342, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310629

RESUMO

BACKGROUND: A major breakthrough in cystic fibrosis (CF) therapy was achievedAQ1 with CFTR modulators. The lumacaftor/ivacaftor combination is indicated for the treatment of CF in pediatric patients above 6 years old. Pharmacokinetic (PK) studies of lumacaftor/ivacaftor in these vulnerable pediatric populations are AQ2crucial to optimize treatment protocols. OBJECTIVES AND METHODS: The objectives of this study were to describe the population PK (PPK) of lumacaftor and ivacaftor in children with CF, and to identify factors associated with interindividual variability. The association between drug exposure and clinical response was also investigated. RESULTS: A total of 75 children were included in this PPK study, with 191 concentrations available for each compound and known metabolites (lumacaftor, ivacaftor, ivacaftor-M1, and ivacaftor-M6). PPK analysis was performed using Monolix software. A large interindividual variability was observed. The main sources of interpatient variability identified were patient bodyweight and hepatic function (aspartate aminotransferase). Forced expiratory volume in the first second (FEV1) was statistically associated with the level of exposure to ivacaftor after 48 weeks of treatment. CONCLUSIONS: This study is the first analysis of lumacaftor/ivacaftor PPK in children with CF. These data suggest that dose adjustment is required after identifying variability factors to optimize efficacy. The use of therapeutic drug monitoring as a basis for dose adjustment in children with CF may be useful.


Assuntos
Benzodioxóis , Fibrose Cística , Quinolonas , Humanos , Criança , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Combinação de Medicamentos , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Volume Expiratório Forçado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA