Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(5): 2690-2699, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36479694

RESUMO

BACKGROUND: Oilseed rape, as one of the most important oil crops, is an important source of vegetable oil and protein for mankind. As a non-essential element for plant growth, heavy metal cadmium (Cd) is easily absorbed by plants. Cd will inhibit the photosynthesis of plants, destroy the cell structure, slow the growth of plants, and affect their development and yield. It is necessary to develop a method based on visible near-infrared (NIR) hyperspectral imaging (HSI) technology to quickly and nondestructively determine the Cd content in rape leaves. RESULTS: Two-layer estimation models were established by combining visible-NIR HSI with ensemble learning methods (stacking and blending). One layer used support vector regression, extreme learning machine, decision tree, and random forest (RF) as basic learners, and the other layer used support vector regression or RF as a meta learner. Different models were used to analyze the spectra of rape treated with five Cd concentrations to obtain the best prediction method. The results showed that the best model to predict Cd content was the stacking ensemble model with RF as the meta learner, with coefficient of determination for prediction of 0.9815 and root-mean-square error for prediction of 5.8969 mg kg-1 . A pseudo-color image was developed using this stacking model to visualize the content and distribution of Cd. CONCLUSION: The combination of visible-NIR HSI technology and the stacking ensemble learning method is a feasible method to detect the Cd content in rape leaves, which has the potential of being rapid and nondestructive. © 2022 Society of Chemical Industry.


Assuntos
Brassica rapa , Cádmio , Cádmio/análise , Análise dos Mínimos Quadrados , Máquina de Vetores de Suporte , Óleos de Plantas/química , Folhas de Planta/química , Verduras
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121479, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696971

RESUMO

Exploring the cadmium (Cd) pollution in rape is of great significance to food safety and consumer health. In this study, a rapid, nondestructive and accurate method for the determination of Cd content in rape leaves based on hyperspectral imaging (HSI) technology was proposed. The spectral data of rape leaves under different Cd stress from 431 nm to 962 nm were collected by visible-near infrared HSI spectrometer. In order to improve the robustness and accuracy of the regression model, a machine learning algorithm was proposed, named multi-disturbance bagging Extreme Learning Machine (MdbaggingELM). The prediction models of Cd content in rape leaves based on MdbaggingELM and ELM-based method (ELM and baggingELM) were established and compared. The results showed that the model of the proposed MdbaggingELM method performed significantly in the prediction of Cd content, with Rp2 of 0.9830 and RMSEP of 2.8963 mg/kg. The results confirmed that MdbaggingELM is an efficient regression algorithm, which played a positive role in enhancing the stability and the prediction effect of the model. The combination of MdbaggingELM and HSI technology has great potential in the detection of Cd content in rape leaves.


Assuntos
Cádmio , Imageamento Hiperespectral , Algoritmos , Análise dos Mínimos Quadrados , Folhas de Planta , Tecnologia , Verduras
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121641, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870430

RESUMO

Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed rape industry. This study adopted a deep learning (DL) method to predict the Zn content of oilseed rape leaves using hyperspectral imaging (HSI). The dropout mechanism was introduced to improve the stacked sparse autoencoder (SSAE) and named modified SSAE (MSSAE). MSSAE extracted deep spectral features of samples based on pixel-level spectral information (the wavelength range of the spectrum is 431-962 nm). Subsequently, the deep spectral features were applied as the inputs for support vector regression (SVR) and least squares support vector regression (LSSVR) to predict the Zn content in oilseed rape leaves. In addition, the successive projections algorithm (SPA) and the variable iterative space shrinkage approach (VISSA) were investigated as wavelength selection algorithms for comparison. The results showed that the MSSAE-LSSVR model had the best prediction performance (the coefficient of determination (R2) and root mean square error (RMSE) of the prediction set were 0.9566 and 1.0240 mg/kg, respectively). The overall results showed that the MSSAE was able to extract the deep features of HSI data and validated the possibility of HSI combined with a DL method for nondestructive testing of Zn content in oilseed rape leaves.


Assuntos
Brassica napus , Imageamento Hiperespectral , Algoritmos , Análise dos Mínimos Quadrados , Folhas de Planta , Máquina de Vetores de Suporte , Verduras , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA