RESUMO
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Assuntos
Resistência à Seca , Hordeum , Hordeum/genética , Homocisteína S-Metiltransferase , Espécies Reativas de Oxigênio , Espermina , Melhoramento Vegetal , Secas , Estresse Fisiológico/genéticaRESUMO
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, HâºKâº-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghaiâ»Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Assuntos
Hordeum/genética , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Biomarcadores/metabolismo , Secas , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Melhoramento Vegetal/métodos , TibetRESUMO
Xyloglucan endotransglucosylase/hydrolases (XTHs)-a family of xyloglucan modifying enzymes-play an essential role in the construction and restructuring of xyloglucan cross-links. However, no comprehensive study has been performed on this gene family in barley. A total of 24 HvXTH genes (named HvXTH1-24) and an EG16 member were identified using the recently completed genomic database of barley (Hordeum vulgare). Phylogenetic analysis showed that 24 HvXTH genes could be classified into three phylogenetic groups: (I/II, III-A and III-B) and HvXTH15 was in the ancestral group. All HvXTH protein members-except HvXTH15-had a conserved N-glycosylation site. The genomic location of HvXTHs on barley chromosomes showed that the 24 genes are unevenly distributed on the 7 chromosomes, with 10 of them specifically located on chromosome 7H. A structure-based sequence alignment demonstrates that each XTH possesses a highly conserved domain (ExDxE) responsible for catalytic activity. Expression profiles based on the barley genome database showed that HvXTH family members display different expression patterns in different tissues and at different stages. This study is the first systematic genomic analysis of the barley HvXTH gene family. Our results provide valuable information that will help to elucidate the roles of HvXTH genes in the growth and development of barley.
Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glicosiltransferases/genética , Hordeum/enzimologia , Hordeum/genética , Família Multigênica , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Sequência Conservada , Genes de Plantas , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Hordeum/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios ProteicosRESUMO
The projected increase in drought severity and duration worldwide poses a significant threat to crop growth and sustainable food production. Xyloglucan endotransglucosylase/hydrolases (XTHs) family is essential in cell wall modification through the construction and restructuring of xyloglucan cross-links, but their role in drought tolerance and stomatal regulation is still illusive. We cloned and functionally characterized HvXTH1 using genetic, physiological, biochemical, transcriptomic and metabolomic approaches in barley. Evolutionary bioinformatics showed that orthologues of XTH1 was originated from Streptophyte algae (e.g. some species in the Zygnematales) the closest clade to land plants based on OneKP database. HvXTH1 is highly expressed in leaves and HvXTH1 is localized to the plasma membrane. Under drought conditions, silencing HvXTH1 in drought-tolerant Tibetan wild barley XZ5 induced a significant reduction in water loss rate and increase in biomass, however overexpressing HvXTH1 exhibited drought sensitivity with significantly less drought-responsive stomata, lower lignin content and a thicker cell wall. Transcriptome profile of the wild type Golden Promise and HvXTH1-OX demonstrated that drought-induced differentially expressed genes in leaves are related to cell wall biosynthesis, abscisic acid and stomatal signaling, and stress response. Furthermore, overexpressing HvXTH1 suppressed both genes and metabolites in the phenylpropanoid pathway for lignin biosynthesis, leading to drought sensitivity of HvXTH1-OX. We provide new insight by deciphering the function of a novel protein HvXTH1 for drought tolerance in cell wall modification, stomatal regulation, and phenylpropanoid pathway for lignin biosynthesis in barley. The function of HvXTH1 in drought response will be beneficial to develop crop varieties adapted to drought.