Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226827

RESUMO

Tailoring the crystal structure, spin, and charge state of perovskite oxides through fluorine ion doping is an attractive and effective strategy, which could significantly modify the physical and chemical properties of base oxides. Here, BaFe1-xMnxO3-δ (x = 0, 0.1, 0.2, 0.3) and BaFe1-xMnxO2.9-δF0.1 (x = 0.1, 0.2, 0.3), belonging to 6H-type BaFeO3-δ, are prepared and investigated to evaluate the impact of F- doping. The distortion of crystal structure and the reduced average valence of Mn and Fe confirm the preference for F- substitution in the hexagonal layer, which are found as the key factors for the improved magnetic properties, including ferromagnetic ordering temperature, coercive force, and remanent magnetization. Moreover, the valence reduction of B-site ions and the increased resistance distinctly indicate the expense of electron hole via fluorine doping. This work describes the adjustment of crystal structure, electronic configuration, and ferromagnetic performance by simple F- doping, which provides a prospect for practical magnetic materials.

2.
J Chem Phys ; 156(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38154116

RESUMO

The low stability and poor activities of transition metal selenides (TMSs) in alkaline electrolyte limit their application in supercapacitors. Metal doping and hybridization of various electroactive materials with different properties are utilized to enhance the electrochemical performance of TMSs by optimizing their electronic structure and providing rich electrochemical active sites. Herein, we report a simple two-step hydrothermal method for the growth of Zn-doped NiSe2 and Ni(OH)2 nanocomposites on Ni foam [Zn-NiSe2/Ni(OH)2]. The resulting material delivers high specific capacity (1525.8 C g-1/564.7 mA h g-1 at 6 A g-1 and 1220 C g-1 at 10 A g-1) in a three-electrode system. A Zn-NiSe2/Ni(OH)2//porous carbon (PC) aqueous asymmetric supercapacitor (ASC) was built by utilizing Zn-NiSe2/Ni(OH)2 as the positive electrode and PC as the negative electrode. This Zn-NiSe2/Ni(OH)2//PC ASC shows an energy density of 75.8 W h kg-1 at a power density of 916.1 W kg-1 and achieves a specific capacity retention of 100% after 25 000 cycles at 10 A g-1. These results reveal that the Zn doping and the hybridization of NiSe2 with Ni(OH)2 can obtain impressive electrochemical properties in ASCs.

3.
Phys Chem Chem Phys ; 23(26): 14195-14204, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159999

RESUMO

The two-dimensional counterpart of diamond, diamane, has attracted increasing interest due to its potentially distinctive properties. In this paper, diamanes anchored with different anion groups have been systematically studied with density functional theory (DFT) for the first time. Among them 12 conformers are confirmed to be stable and present direct semiconductor features with bandgaps ranging from 2.527 eV to 4.153 eV, and the in-plane stiffness is larger than that of graphene. Moreover, the electron carrier mobility of chair2-F is exceptionally high at 16546.713 cm2 V-1 s-1 along the y-direction, which is remarkably larger than that of diamond; and N-, B-doped boat2-H can be doped to have n-, p-type conductivity with a moderate activation energy of 0.34 and 0.37 eV, respectively. This work suggests that functionalized diamanes are promising for electronic devices and engineering materials.

4.
Proc Natl Acad Sci U S A ; 115(12): 2873-2877, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507211

RESUMO

Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes.

5.
Angew Chem Int Ed Engl ; 59(52): 23678-23683, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32959493

RESUMO

Single atom catalysts (SACs) are of great importance for oxygen reduction, a critical process in renewable energy technologies. The catalytic performance of SACs largely depends on the structure of their active sites, but explorations of highly active structures for SAC active sites are still limited. Herein, we demonstrate a combined experimental and theoretical study of oxygen reduction catalysis on SACs, which incorporate M-N3 C1 site structure, composed of atomically dispersed transition metals (e.g., Fe, Co, and Cu) in nitrogenated carbon nanosheets. The resulting SACs with M-N3 C1 sites exhibited prominent oxygen reduction catalytic activities in both acidic and alkaline media, following the trend Fe-N3 C1 > Co-N3 C1 > Cu-N3 C1 . Theoretical calculations suggest the C atoms in these structures behave as collaborative adsorption sites to M atoms, thanks to interactions between the d/p orbitals of the M/C atoms in the M-N3 C1 sites, enabling dual site oxygen reduction.

6.
J Am Chem Soc ; 141(7): 3121-3128, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669840

RESUMO

The composition and structure are crucial for stabilizing an appropriate electronic configuration (unit eg electron for example) in high-efficiency electrocatalysts for the oxygen evolution reaction (OER). Here, an excellent platform to investigate the roles of the composition and structure in tuning the electron configuration for higher OER efficiency is provided by layered perovskite oxides with subtle variations of composition and structure (doping with 0%, 50%, and 100% cobalt in the Bi7Fe3Ti3O21). The crystal structures were analyzed by X-ray diffraction refinement, and the electronic structures were calculated based on X-ray absorption spectroscopy and magnetization vs temperature plots according to the Curie-Weiss law. The results indicate that the elongation of oxygen octahedra along the c-axis in layered perovskite could stabilize Co ions in the intermediate spin (IS) ( t2g)5( eg)1 state, resulting in dramatically enhanced electronic conductivity and absorption capacity. Subsequently, the OER efficiency of sample with 100% Co was found to be (incredibly) 100 times higher than that of the sample with 0% Co, with the current density increased from 0.13 to 43 mA/cm2 (1.8 V vs reversible hydrogen electrode); the Tafel slope was reduced from 656 to 87 mV/dec; and double-layer capacity enhanced from 174 to 4193 µF/cm2. This work reveals that both the composition and structure should be taken into account to stabilize a suitable electronic structure such as IS Co ions with moderate absorption and benign electronic conductivity for high-efficiency catalysis of the OER.

7.
Nanotechnology ; 29(3): 035702, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29176048

RESUMO

The photocatalytic water-splitting behavior of hierarchically structured TiO2 ball-flowers with different Fe ion contents was studied, in order to elucidate the effects of Fe doping on their water-splitting performance. It was found that with the increase of Fe doping content, the hydrogen evolution rate increased initially and then decreased. The highest hydrogen evolution of 697 µmol g-1 is observed for 2Fe/TiO2, after 4 h of light irradiation, which was five times greater than that in the case of pure TiO2 who has 140 µmol g-1 hydrogen evolution after 4 h of light irradiation. This improvement in the water-splitting efficiency owing to optimized Fe doping could be attributed to an enhancement in the visible-light absorption characteristics and an increase in the number of oxygen vacancies, which act as the reaction sites for water splitting.

8.
Nanotechnology ; 29(26): 265706, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29648549

RESUMO

In this work, the Aurivillius-phase ferroelectric Bi3Fe0.5Nb1.5O9 were synthesized by hydrothermal (BFNO-H) and solid state methods (BFNO-S), respectively. The BFNO-H shows a hierarchical morphology, which is stacked by intersecting single-crystal nanosheets with {001} and {110} exposed facets, while the BFNO-S shows disorganized micron-scale morphology. BFNO-H shows a much stronger photodegradation activity (10.4 times and 9.8 times) than BFNO-S in the visible-light photodegradation of rhodamine B (RhB) and salicylic acid. The higher photodegradation activity of BFNO-H was firstly ascribed to the hierarchical structure and the larger specific surface area (16.586 m2 g-1) because a large specific surface area can increase reactive sites and shorten photogenerated carrier migration distance. However, after being normalized by the specific surface area, BFNO-H still performs better than BFNO-S, implying that the specific surface area is not the only factor that determines the photocatalytic activity. Considering that the built-in electric field originating from spontaneous polarization in Bi3Fe0.5Nb1.5O9 has existed in both ab plane and c direction, it matches well with the {001} and {110} exposed facets of BFNO-H nanosheets. This appropriate matching in BFNO-H nanosheets may improve the separation and transmission of photogenerated electron-hole pairs and further enhance its photocatalytic activity. Moreover, the trapping experiments reveals that holes (h +) are the main active species and hole-derived oxidation is the main redox reaction during photodegradation of organic pollutions.

9.
Angew Chem Int Ed Engl ; 57(43): 14139-14143, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30207028

RESUMO

A novel synthesis strategy is demonstrated to prepare Mo3 P/Mo nanobelts with porous structure for the first time. The growth and formation mechanism of the porous Mo3 P/Mo nanobelt structure was disclosed by varying the contents of H2 /PH3 and the reaction temperature. During the hydrogen evolution reaction (HER) catalysis, the optimized porous Mo3 P/Mo nanobelts exhibited a small overpotential of 78 mV at a current density of 10 mA cm-2 and a low Tafel slope of 43 mV dec-1 , as well as long-term stability in alkaline media, surpassing Pt wire. Density functional theory (DFT) calculations reveal that the H2 O dissociation on the surface of Mo3 P is favorable during the HER.

10.
Nanotechnology ; 28(41): 415603, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28767042

RESUMO

The anchoring of platinum quantum dots (Pt QDs) on the surface of hematite (α-Fe2O3) nanorods is regarded as an efficient way to promote photoelectrochemical activity. To further improve the performance of the Pt-hematite material system, the size and location of the Pt QDs is a key factor to be considered. In this work, an α-Fe2O3 nanorod array film was grown on a transparent conductive FTO substrate by a facile hydrothermal method. Pt QDs with a diameter of ∼2 nm were uniformly deposited on the surface of the α-Fe2O3 nanorod. The dispersibility of the Pt QDs was greatly improved by regulating the surface wettability of the α-Fe2O3 thin film. The dependence of surface wettability on the micro-/nano-structure of the α-Fe2O3 array was revealed. Due to the structure regulation of the α-Fe2O3 nanoarray and the greatly improved dispersibility of the Pt QDs, the photocurrent of the 2.7 wt% Pt QD anchored α-Fe2O3 nanorod array was ten times higher than that of the pure α-Fe2O3 nanorod array. This work points to an efficient approach for dispersing the QDs in a nanoarray thin film by adjusting its micro-/nano-structure and surface wettability.

11.
Adv Sci (Weinh) ; 11(4): e2305959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037307

RESUMO

With the CoO2 slabs consisting of Co4 O4 cubane structure, layered Nax CoO2 are considered promising candidates for oxygen evolution reaction (OER) in alkaline media given their earth-abundant and structural advantages. However, due to the strong adsorption of intermediates on the large basal planes, Nax CoO2 cannot meet the activity demands. Here, a novel one-pot synthesis strategy is proposed to realize the high solubility of iron in Nax CoO2 in an air atmosphere. The optimist Na0.6 Co0.9 Fe0.1 O2 exhibits enhanced OER activity compared to their pristine and other reported Fe-doped Nax CoO2 counterparts. Such an enhancement is mainly ascribed to the abundant active sites on the activated basal planes and the participation of oxidized oxygen as active sites independently, which breaks the scaling relationship limit in the OER process. This work is expected to contribute to the understanding of the modification mechanism of Fe-doped cobalt-based oxides and the exploitation of layer-structured oxides for energy application.

12.
ACS Nano ; 17(7): 6811-6821, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36943144

RESUMO

The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.

13.
ACS Nano ; 17(23): 24282-24289, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009580

RESUMO

Efficient and stable catalysts are highly desired for the electrochemical conversion of hydrogen, oxygen, and water molecules, processes which are crucial for renewable energy conversion and storage technologies. Herein, we report the development of hollow nitrogenated carbon sphere (HNC) dispersed rhodium (Rh) single atoms (Rh1HNC) as an efficient catalyst for bifunctional catalysis. The Rh1HNC was achieved by anchoring Rh single atoms in the HNC matrix with an Rh-N3C1 configuration, via a combination of in situ polymerization and carbonization approach. Benefiting from the strong metal atom-support interaction (SMASI), the Rh and C atoms can collaborate to achieve robust electrochemical performance toward both the hydrogen evolution and oxygen reduction reactions in acidic media. This work not only provides an active site with favorable SMASI for bifunctional catalysis but also brings a strategy for the design and synthesis of efficient and stable bifunctional catalysts for diverse applications.

14.
ACS Nano ; 17(3): 2923-2931, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722955

RESUMO

Single atom catalysts (SACs) with isolated active sites exhibit the highest reported mass activity for hydrogen evolution catalysis, which is crucial for practical applications. Here, we demonstrate that ultrahigh mass activity can also be achieved by rationally merging the isolated platinum (Pt) active sites in SAC. The catalyst was obtained by the thermodynamically driven diffusing and merging phosphorus-doped carbon (PC) supported Pt single atoms (Pt1@PC) into Pt nanoclusters (PtM@PC). X-ray absorption spectroscopy analysis revealed that the merged nanoclusters exhibit much stronger interactions with the support than the traditional method, enabling more efficient electron transfer. The optimized PtM@PC exhibited an order of magnitude higher mass activity (12.7 A mgPt-1) than Pt1@PC (0.9 A mgPt-1) at an overpotential of 10 mV in acidic media, which is the highest record to date, far exceeding reports for other outstanding SACs. Theoretical study revealed that the collective active sites in PtM@PC exhibit both favorable hydrogen binding energy and fast reaction kinetics, leading to the significantly enhanced mass activity. Despite its low Pt content (2.2 wt %), a low hydrogen production cost of ∼3 USD kg-1 was finally achieved in the full-water splitting at a laboratory scale.

15.
J Phys Chem Lett ; 13(3): 784-791, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35044184

RESUMO

The couplings among fundamental quantum parameters provide versatile freedom of manipulations for useful electronic structures, based on which optimized oxygen evolution reaction (OER) performances can be achieved. In this work, we demonstrate the successful regulation of the electronic structure in layered NaxCoO2 oxides to introduce a non-Fermi-liquid (NFL) state by adjusting the Na content and Na occupation in the lattice. The presence of an NFL is facilitated by the weakened electron-electron correlation when the on-site Coulomb repulsion of Co4+ with Na+ and oxygen vacancy with Na+ is balanced. As a feature of NFL, the metallic states in the vicinity of the Fermi energy contribute to a fast electron transfer efficiency and eventually to an improved OER performance. These findings open up a new avenue to design highly efficient OER electrocatalysts in strong electron-correlated transition metal material systems by consideration of couplings among the fundamental quantum parameters.

16.
ACS Nano ; 16(11): 18830-18837, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36264779

RESUMO

The oxygen reduction reaction is essential for fuel cells and metal-air batteries in renewable energy technologies. Developing platinum-group-metal (PGM)-free catalysts with comparable catalytic performance is highly desired for cost efficiency. Here, we report a tin (Sn) nanocluster confined catalyst for the electrochemical oxygen reduction. The catalyst was fabricated by confining 1-1.5 nm sized Sn nanoclusters in situ in microporous nitrogen-doped carbon polyhedra (SnxNC) with an average pore size of 0.7 nm. SnxNC exhibited high catalytic performance in acidic media, including positive onset and half-wave potentials, comparable to those of the state-of-the-art Pt/C and far exceeding those of the Sn single-atom catalyst. Combined structural and theoretical analyses reveal that the confined Sn nanoclusters, which have favorable oxygen adsorption behaviors, are responsible for the high catalytic performance, but not Sn single atoms.

17.
Nanoscale ; 14(45): 17036-17043, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367106

RESUMO

Inversion symmetry breaking plays a critical role in the formation of magnetic skyrmions. Therefore, for the application of skyrmion-based devices, it is important to develop novel engineering techniques and explore new non-centrosymmetric lattices. In this paper, we report the rational synthesis of stable γ-phase MnS1-xSex (0 ≤ x ≤ 0.45) nanoflakes with an asymmetric distribution of the elemental content, which persists on inversion symmetry breaking. The temperature dependence of resonant second-harmonic generation characterization reveals that a non-centrosymmetric crystal structure exists in our as-grown γ-phase MnS1-xSex with spatial-inversion symmetry breaking. By tuning the parameters of nucleation temperature and growth time, we produced a detailed growth phase diagram, revealing a controllable as-grown structure evolution from γ-phase wurtzite-type to α-phase rock-salt type structure of MnS1-xSex nanoflakes. Our work provides a new playground to explore novel materials that have broken inversion symmetry.

18.
Opt Express ; 19 Suppl 4: A763-71, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747545

RESUMO

The enhancement of solar light absorption in a solar cell is a challenging issue. In this article we show that in a thin-film silicon solar cell covered with silver nanoparticles on the surface, the absorption of the incident light can be particularly enhanced at certain angular range and wavelength. Such absorption enhancements are associated with the resonant localized surface plasmon (LSP) modes of the nanoparticle and nanoparticle-induced local Fabry-Perot (FP) modes. Our simulations suggest that the spectral shift of the LSP modes due to changing the incident angle leads to an incident-angle-sensitive absorption enhancement of the solar cell. Selecting the incident angle in a well-defined range of 0° to 35° is essential for optimizing the performance of a thin-film solar cell.

19.
Chem Commun (Camb) ; 57(36): 4412-4415, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949405

RESUMO

Stable and efficient photoelectrochemical water splitting has been achieved using a BaTaO2N photoanode decorated with CoO microflowers. The CoO microflowers effectively collect holes from BaTaO2N which kinetically protects BaTaO2N against photocorrosion. A Faraday efficiency of almost unity (99.2%) has been recorded for O2 evolution reactions. The tips of the CoO microflowers are the most active sites for water oxidation reactions.

20.
Nanoscale ; 13(20): 9264-9269, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33982743

RESUMO

Recent experiments on magic-angle twisted bi-layer graphene have attracted intensive attention due to exotic properties such as unconventional superconductivity and correlated insulation. These phenomena were often found at a magic angle less than 1.1°. However, the preparation of precisely controlled bi-layer graphene with a small magic angle is challenging. In this work, electronic properties of large-angle twisted bi-layer graphene (TBG) under pressure are investigated with density functional theory. We demonstrate that large-angle TBG can display flat bands nearby the Fermi level under pressure, which may also induce interesting properties such as superconductivity which have only been found in small-angle TBG at ambient pressure. The Fermi velocity is found to decrease monotonously with pressure for large twisted angles, e.g., 21.8°. Our work indicates that applying pressure provides opportunities for flat-band engineering in larger angle TBG and supports further exploration in related investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA