Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Immunol ; 376: 104530, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567855

RESUMO

Neutrophils play a prominent role in the inflammatory response and are a critical factor in the pathogenesis of acute lung injury (ALI). Despite a deep understanding of neutrophil accumulation in the pulmonary microvasculature during the process of this disease, the regulatory mechanism of neutrophil recruitment remains unclear. This study aimed to explore the functions and signaling pathways of the purinergic receptor P2Y6 in mediating the innate immune response in ALI. P2Y6-deficient mice, bone marrow chimeras, and neutrophilic chimeras were created in this work to explore the function of P2Y6 in ALI. The results indicated that the extracellular nucleotide UDP was released as a dangerous signal and activated P2Y6 to promote the inflammatory response and pulmonary damage during the process of ALI. P2Y6 deficiency may mitigate deterioration of this disease, including reduced ALI-related inflammatory factor release and immune cell invasion. Bone marrow and neutrophil chimeras and adoptive transfer in mice showed that P2Y6 expression on neutrophils contributed to neutrophil infiltration into lung tissues induced by UDP. Further work indicated that P2Y6 was involved in the neutrophil migration capability through the ErK signaling pathway by mediating the deformation of F-actin filaments and pseudopodia formation during cell recruitment to pulmonary tissue. Here, we provide evidence for the mechanism by which the purinergic receptor P2Y6 contributes to ALI development by regulating neutrophil infiltration into lung tissues. These data indicated that P2Y6 might be a potential therapeutic target for the treatment of this acute severe disease.


Assuntos
Lesão Pulmonar Aguda , Neutrófilos , Lesão Pulmonar Aguda/patologia , Animais , Lipopolissacarídeos/metabolismo , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Difosfato de Uridina/metabolismo
2.
Environ Sci Pollut Res Int ; 30(58): 122755-122773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37978121

RESUMO

This paper focuses on enhancing the performance of electrocatalytic CO2 reduction reaction (CO2RR) by improving the dispersion of cobalt phthalocyanine (CoPc), especially for the methanol formation with multi-walled carbon nanotubes (CNTs) as a support. The promising CNTs-supported CoPc hybrid was prepared based on ball milling technique, and the surface morphology was characterized by means of those methods such as scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectra (XPS). Then, the synergistic effect of CNTs and ball milling on CO2RR performance was analyzed by those methods of cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), gas chromatography (GC), and proton nuclear magnetic resonance spectroscopy (1HNMR). Subsequently, the reduction mechanism of CO2 on ball-milled CoPc/CNTs was revealed based on the DFT calculations. The results showed that the electrocatalyst CoPc/CNTs hybrid prepared with sonication exhibited a conversion efficiency of CO2 above 60% at -1.0 V vs. RHE, accompanied by the Faradaic efficiencies of nearly 50% for CO and 10% for methanol, respectively. The addition of CNTs as the support improved the utilization efficiency of CoPc and reduced the transfer resistance of species and electrons. Then the ball-milling method further improved the dispersion of CoPc on CNTs, which resulted in the fact that the methanol efficiency was raised by 6% and partial current density was increased by nearly 433%. The better dispersion of CoPc on CNTs adjusted the reduction pathway of CO2 and resulted in the enhancement of methanol selectivity and catalytic activity of CO2. The probable pathway for methanol production was proposed as CO2 → *CO2- → *COOH → *CO → *CHO → *CH2O → *OCH3 → CH3OH. This suggests the significance of the ball-milling method during the preparation of better supported catalysts for CO2RR towards those high-valued products.


Assuntos
Dióxido de Carbono , Nanotubos de Carbono , Metanol , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079357

RESUMO

In this work, the precipitates in Ti-Mo-V steel were systematically characterized by high-resolution transmission electron microscopy (HRTEM). The thermodynamics and kinetics of precipitates in Ti-Mo and Ti-Mo-V steels were theoretically analyzed, and the effect of vanadium on the precipitation behavior was clarified. The results showed that the precipitation volume fraction of the Ti-Mo-V steel was significantly higher than that of Ti-Mo steel. The randomly dispersed precipitation and interphase precipitation (Ti, Mo, V)C particles coexisted in the Ti-Mo-V steel. When the temperature was higher than 872 °C, the addition of vanadium could increase the driving force for (Ti, Mo, V)C precipitation in austenite, resulting in an increased nucleation rate and shortened incubation period, promoting the (Ti, Mo, V)C precipitation. When the temperature was lower than 872 °C, the driving force for (Ti, Mo, V)C precipitation in austenite was lower than that for (Ti, Mo)C precipitation, and the incubation period of (Ti, Mo, V)C precipitation was increased. Moreover, it was also found that the precipitated-time-temperature curve of (Ti, Mo, V)C precipitated in the ferrite region was "C" shaped, but that of (Ti, Mo)C was "ε" shaped, and the incubation period of (Ti, Mo, V)C was significantly shorter than that of (Ti, Mo)C.

4.
Sci Rep ; 8(1): 5305, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593294

RESUMO

Δ6 fatty acyl desaturase (Fads2) is a rate-limiting enzyme in long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. Comparative analysis of gene promoters of Fads2 between salmonids and carnivorous marine fish suggested that the lack of binding site for stimulatory protein 1 (Sp1) was responsible for the low expression of fads2 gene of carnivorous marine species. To confirm this speculation, the fads2 candidate promoter (2646 bp) was cloned from carnivorous marine teleost Epinephelus coioides, and 330 bp core regulatory region was identified. Several binding sites for transcriptional factors such as nuclear factor 1, nuclear factor Y, sterol regulatory element and hepatocyte nuclear factor 4γ were identified, while that for Sp1 was shown to be absent in the promoter by both bioinformatic analysis and site-directed mutation. Moreover, after the Sp1-binding site from the fads2 promoter of herbivorous Siganus canaliculatus, the first marine teleost demonstrated to have LC-PUFA biosynthetic ability, was inserted into the corresponding region of E. coioides fads2 promoter, activity was significantly increased. The results provided direct data for the importance of the Sp1-binding site in determining fads2 promoter activity, and indicated that its lack may be a reason for low expression of fads2 and poor LC-PUFA biosynthetic ability in E. coioides.


Assuntos
Bass/genética , Ácidos Graxos Dessaturases/genética , Proteínas de Peixes/genética , Fator de Transcrição Sp1/metabolismo , Animais , Bass/metabolismo , Sítios de Ligação , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/metabolismo , Perciformes , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA