Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(40): 25738-25745, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30281047

RESUMO

Two monomers, M:OO and M:ON, and their corresponding polymers, P:OO and P:ON, were prepared from styrene derivatives N,N-diphenyl-4-vinyl-aniline with different substituents (-OCH3 and -N(CH3)2) in the N-phenyl para positions. The polymers were synthesised and fully characterised to study their function as hole transport materials (HTMs) in perovskite solar cells (PSCs). The thermal, optical and electrochemical properties and performance of these monomers and polymers as HTMs in PSCs were compared in terms of their structure. The polymers form more stable amorphous glassy states and showed higher thermal stability than the monomers. The different substituent in the para position influenced the highest occupied molecular orbital (HOMO) level, altering the oxidation potential. Both monomers and polymers were employed as HTMs in perovskite solar cells with a device configuration FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/HTM/Au resulting in power conversion efficiencies of 7.48% for M:OO, 5.14% for P:OO, 5.28% for P:ON and 3.52% for M:ON. Although showing comparatively low efficiencies, the polymers showed much superior reproducibility in comparison with Spiro-OMeTAD or the monomers, suggesting further optimisation of polymeric HTMs with redox side groups is warranted.

2.
Phys Chem Chem Phys ; 20(2): 1252-1260, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250614

RESUMO

A new series of diacetylide-triphenylamine (DATPA) derivatives with five different alkyl chains in the para position, MeO, EtO, nPrO, iPrO and BuO, were synthesised, fully characterised and their function as hole-transport materials in perovskite solar cells (PSC) studied. Their thermal, optical and electrochemical properties were investigated along with their molecular packing and charge transport properties to analyse the influence of different alkyl chains in the solar cell parameters. The shorter alkyl chain facilitates more compact packing structures which enhanced the hole mobilities and reduced recombination. This work suggests that the molecule with the methoxy substituent (MeO) exhibits the best semiconductive properties with a power conversion efficiency of up to 5.63%, an open circuit voltage (Voc) of 0.83 V, a photocurrent density (Jsc) of 10.84 mA cm-2 and a fill factor of 62.3% in perovskite solar cells. Upon replacing the methoxy group with longer alkyl chain substituents without changing the energy levels, there is a decrease in the charge mobility as well as PCE (e.g. 3.29% for BuO-DATPA). The alkyl chain length of semiconductive molecules plays an important role in achieving high performance perovskite solar cells.

3.
Phys Chem Chem Phys ; 20(46): 29567, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30451269

RESUMO

Correction for 'Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility' by Rosinda Fuentes Pineda et al., Phys. Chem. Chem. Phys., 2018, 20, 25738-25745.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34133139

RESUMO

Perovskite solar modules (PSMs) have been attracting the photovoltaic market, owing to low manufacturing costs and process versatility. The employment of flexible substrates gives the chance to explore new applications and further increase the fabrication throughput. However, the present state-of-the-art of flexible perovskite solar modules (FPSMs) does not show any data on light-soaking stability, revealing that the scientific community is still far from the potential marketing of the product. During this work, we demonstrate, for the first time, an outstanding light stability of FPSMs over 1000 h considering the recovering time (T80 = 730 h), exhibiting a power conversion efficiency (PCE) of 10.51% over a 15.7 cm2 active area obtained with scalable processes by exploiting blade deposition of a transporting layer and a stable double-cation perovskite (cesium and formamidinium, CsFA) absorber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA