Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 115(3): 871-882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279513

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that are derived from Schwann cell lineage around peripheral nerves. As in many other cancer types, cancer stem cells (CSCs) have been identified in MPNSTs, and they are considered the cause of treatment resistance, recurrence, and metastasis. As an element defining the cancer stemness of MPNSTs, we previously reported a molecular mechanism by which exogenous adrenaline activates a core cancer stemness factor, YAP/TAZ, through ß2 adrenoceptor (ADRB2). In this study, we found that MPNST cells express catecholamine synthases and that these enzymes are essential for maintaining cancer stemness, such as the ability to self-renew and maintain an undifferentiated state. Through gene knockdown and inhibition of these enzymes, we confirmed that catecholamines are indeed synthesized in MPNST cells. The results confirmed that catecholamine synthase knockdown in MPNST cells reduces the activity of YAP/TAZ. These data suggest that a mechanism of YAP/TAZ activation by de novo synthesized adrenaline, as well as exogenous adrenaline, may exist in the maintenance of cancer stemness of MPNST cells. This mechanism not only helps to understand the pathology of MPNST, but could also contribute to the development of therapeutic strategies for MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Neoplasias de Bainha Neural/patologia , Catecolaminas , Transdução de Sinais , Epinefrina/uso terapêutico
2.
Cancer Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676373

RESUMO

Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.

3.
Biochem Biophys Res Commun ; 557: 199-205, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33872989

RESUMO

Malignant peripheral nerve sheath tumor (MPNST), a highly malignant tumor that arises in peripheral nerve tissues, is known to be highly resistant to radiation and chemotherapy. Although there are several reports on genetic mutations and epigenetic changes that define the pathogenesis of MPNST, there is insufficient information regarding the microenvironment that contributes to the malignancy of MPNST. In the present study, we demonstrate that adrenaline increases the cancer stem cell population in MPNST. This effect is mediated by adrenaline stimulation of beta-2 adrenergic receptor (ADRB2), which activates the Hippo transducer, YAP/TAZ. Inhibition and RNAi experiments revealed that inhibition of ADRB2 attenuated the adrenaline-triggered activity of YAP/TAZ and subsequently attenuated MPNST cells stemness. Furthermore, ADRB2-YAP/TAZ axis was confirmed in the MPNST patients' specimens. The prognosis of patients with high levels of ADRB2 was found to be significantly worse. These data show that adrenaline exacerbates MPNST prognosis and may aid the development of new treatment strategies for MPNST.


Assuntos
Epinefrina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Bainha Neural/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Prognóstico , Interferência de RNA , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
4.
Mol Ecol ; 30(9): 2009-2024, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33655552

RESUMO

Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Simbiose , Temperatura
5.
Clin Auton Res ; 31(2): 165-178, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32926324

RESUMO

PURPOSE: The autonomic nervous system, consisting of sympathetic and parasympathetic/vagal nerves, is known to control the functions of any organ, maintaining whole-body homeostasis under physiological conditions. Recently, there has been increasing evidence linking sympathetic and parasympathetic/vagal nerves to cancers. The present review aimed to summarize recent developments from studies addressing the relationship between sympathetic and parasympathetic/vagal nerves and cancer behavior. METHODS: Literature review. RESULTS: Human and animal studies have revealed that sympathetic and parasympathetic/vagal nerves innervate the cancer microenvironment and alter cancer behavior. The sympathetic nerves have cancer-promoting effects on prostate cancer, breast cancer, and melanoma. On the other hand, while the parasympathetic/vagal nerves have cancer-promoting effects on prostate, gastric, and colorectal cancers, they have cancer-suppressing effects on breast and pancreatic cancers. These neural effects may be mediated by ß-adrenergic or muscarinic receptors and can be explained by changes in cancer cell behavior, angiogenesis, tumor-associated macrophages, and adaptive antitumor immunity. CONCLUSIONS: Sympathetic nerves innervating the tumor microenvironment promote cancer progression and are related to stress-induced cancer behavior. The parasympathetic/vagal nerves have variable (promoting or suppressing) effects on different cancer types. Approaches directed toward the sympathetic and parasympathetic/vagal nerves can be developed as a new cancer therapy. In addition to existing pharmacological, surgical, and electrical approaches, a recently developed virus vector-based genetic local neuroengineering technology is a powerful approach that selectively manipulates specific types of nerve fibers innervating the cancer microenvironment and leads to the suppression of cancer progression. This technology will enable the creation of "cancer neural therapy" individually tailored to different cancer types.


Assuntos
Neoplasias , Sistema Nervoso Parassimpático , Animais , Sistema Nervoso Autônomo , Humanos , Masculino , Neoplasias/terapia , Sistema Nervoso Simpático , Microambiente Tumoral , Nervo Vago
6.
Mol Phylogenet Evol ; 151: 106905, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652124

RESUMO

Stony corals (Scleractinia) form the basis for some of the most diverse ecosytems on Earth, but we have much to learn about their evolutionary history and systematic relationships. In order to improve our understanding of species in corals we here investigated phylogenetic relationships between morphologically defined species and genetic lineages in the genus Galaxea (Euphyllidae) using a combined phylogenomic and phylogeographic approach. Previous studies revealed the nominal species G. fascicularis included three genetically well-differentiated lineages (L, S & L+) in the western Pacific, but their distribution and relationship to other species in the genus was unknown. Based on genomic (RAD-seq) and mitochondrial sequence data (non-coding region between cytb and ND2) we investigated whether the morphological taxa represent genetically coherent entities and what is the phylogenetic relationship and spatial distribution of the three lineages of G. fascicularis throughout the observed species range. Using the RAD-seq data, we find that the genus Galaxea is monophyletic and contains three distinct clades: an Indo-Pacific, a Pacific, and a small clade restricted to the Chagos Archipelago. The three lineages of G. fascicularis were associated with different RAD-seq clades, with the 'L' lineage showing some morphological distinction from the other two lineages (larger more asymmetrical polyps). In addition to these, three more genetic lineages in G. fascicularis may be distinguished - a Chagossian, an Ogasawaran, and one from the Indian-Red Sea. Among nominal taxa for which we have multiple samples, G. horrescens was the only monophyletic species. The mitochondrial non-coding region is highly conserved apart of the length polymorphism used to define L, S & L+ lineages and lacks the power to distinguish morphological and genetic groups resolved with genomic RAD-sequencing. The polyphyletic nature of most species warrants a careful examination of the accepted taxonomy of this group with voucher collections and their comparison to type specimens to resolve species boundaries. Further insight to the speciation process in corals will require international cooperation for the sharing of specimens to facilitate scientific discovery.


Assuntos
Antozoários/classificação , Antozoários/genética , Recifes de Corais , Filogeografia , Animais , Sequência de Bases , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Oceano Índico , Mitocôndrias/genética , Oceano Pacífico , Filogenia , Análise de Componente Principal
7.
Nucleic Acids Res ; 45(1): 435-445, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27568003

RESUMO

The 2-methylthio (ms2) modification at A37 of tRNAs is critical for accurate decoding, and contributes to metabolic homeostasis in mammals. However, the regulatory mechanism of ms2 modification remains largely unknown. Here, we report that cysteine hydropersulfide (CysSSH), a newly identified reactive sulfur species, is involved in ms2 modification in cells. The suppression of intracellular CysSSH production rapidly reduced ms2 modification, which was rescued by the application of an exogenous CysSSH donor. Using a unique and stable isotope-labeled CysSSH donor, we show that CysSSH was capable of specifically transferring its reactive sulfur atom to the cysteine residues of ms2-modifying enzymes as well as ms2 modification. Furthermore, the suppression of CysSSH production impaired insulin secretion and caused glucose intolerance in both a pancreatic ß-cell line and mouse model. These results demonstrate that intracellular CysSSH is a novel sulfur source for ms2 modification, and that it contributes to insulin secretion.


Assuntos
Cisteína/análogos & derivados , Dissulfetos/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA de Transferência/metabolismo , Enxofre/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Radicais Livres , Regulação da Expressão Gênica , Células HeLa , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Conformação de Ácido Nucleico , RNA de Transferência/genética , Compostos de Sulfidrila/metabolismo , tRNA Metiltransferases/genética
8.
PLoS Genet ; 12(9): e1006355, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27689697

RESUMO

Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury.

9.
Hum Mol Genet ; 23(17): 4639-50, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24760768

RESUMO

Single-nucleotide polymorphisms (SNPs) in CDKAL1 have been associated with the development of type 2 diabetes (T2D). CDKAL1 catalyzes 2-methylthio modification of adenosine at position 37 of tRNA(Lys)(UUU). A deficit of this modification causes aberrant protein synthesis, and is associated with impairment of insulin secretion in both mouse model and human. However, it is unknown whether the T2D-associated SNPs in CDKAL1 are associated with downregulation of CDKAL1 by regulating the gene expression. Here, we report a specific splicing variant of CDKAL1 termed CDKAL1-v1 that is markedly lower in individuals carrying risk SNPs of CDKAL1. Interestingly, CDKAL1-v1 is a non-coding transcript, which regulates the CDKAL1 level by competitive binding to a CDKAL1-targeting miRNA. By direct editing of the genome, we further show that the nucleotides around the SNP regions are critical for the alternative splicing of CDKAL1-v1. These findings reveal that the T2D-associated SNPs in CDKAL1 reduce CDKAL1-v1 levels by impairing splicing, which in turn increases miRNA-mediated suppression of CDKAL1. Our results suggest that CDKAL1-v1-mediated suppression of CDKAL1 might underlie the pathogenesis of T2D in individuals carrying the risk SNPs.


Assuntos
Processamento Alternativo/genética , Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Fases de Leitura Aberta/genética , Alelos , Animais , Sequência de Bases , Quinase 5 Dependente de Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Fatores de Risco , tRNA Metiltransferases
10.
Biochem Biophys Res Commun ; 481(1-2): 25-30, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27833022

RESUMO

Cancer cells overcome cellular senescence by activating the telomere maintenance mechanism, which can be either through telomerase or the alternative lengthening of telomeres (ALT). Being exclusive to cancer cells, targeting ALT is a more promising route for the development of drugs against cancer. The histone deacetylase (HDAC) family plays significant roles in various cellular processes. In addition to the regulation of gene expression, HDACs are also known to directly interact with many proteins. We focused on this family, and found that HDAC9 was up-regulated in ALT-positive cells. In ALT-positive cells treated with HDAC9 siRNA, there was a decrease in the telomere replicative capacity, which was evident from the C-circles assay. Furthermore, the formation of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) was inhibited by HDAC9 knockdown. Based on this study, it is suggested that HDAC9 regulates the formation of APBs and could be a candidate for the target of ALT-cancer therapy.


Assuntos
Histona Desacetilases/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Repressoras/metabolismo , Homeostase do Telômero , Telômero/patologia , Linhagem Celular Tumoral , Células HeLa , Humanos
11.
Proc Biol Sci ; 283(1840)2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733543

RESUMO

Larvae of intertidal species develop at sea and must return to adult habitats to replenish populations. Similarly, nutrients, detritus and plankton provide important subsidies spurring growth and reproduction of macroalgae and filter-feeding invertebrates that form the foundation of intertidal communities. Together, these factors determine the density and intensity of interactions among community members. We hypothesized that spatial variation in surfzone hydrodynamics affects the delivery of plankton subsidies. We compared entire zooplankton communities inside and outside the surf zone daily while monitoring physical conditions for one month each at two shores with different surfzone characteristics. Opposite cross-shore distributions of larvae and other zooplankters occurred at the two sites: zooplankton was much more abundant inside the mildly sloping dissipative surf zone (DSZ) with rip currents and was more abundant outside the steep reflective surf zone (RSZ). Biophysical numerical simulations demonstrated that zooplankters were concentrated in rip channels of the DSZ and were mostly unable to enter the RSZ, indicating the hydrodynamic processes behind the observed spatial variation of zooplankters in the surf zone. Differences in the concentration of larvae and other zooplankters between the inner shelf and surf zone may be an underappreciated, key determinant of spatial variation in inshore communities.


Assuntos
Ecossistema , Invertebrados , Plâncton , Alga Marinha , Movimentos da Água , Animais , Cadeia Alimentar , Hidrodinâmica , Larva , Oceanos e Mares , Análise Espacial
13.
Biomaterials ; 309: 122605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754291

RESUMO

Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.


Assuntos
Terapia por Captura de Nêutron de Boro , Glucose , Neoplasias Pancreáticas , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Humanos , Glucose/metabolismo , Linhagem Celular Tumoral , Animais , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Boro/química , Feminino , Camundongos Nus
14.
Mol Cell Neurosci ; 49(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22008253

RESUMO

Although synaptotagmin I, which is a calcium (Ca(2+))-binding synaptic vesicle protein, may trigger soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated synaptic vesicle exocytosis, the mechanisms underlying the interaction between these proteins remain controversial, especially with respect to the identity of the protein(s) in the SNARE complex that bind(s) to synaptotagmin and whether Ca(2+) is required for their highly effective binding. To address these questions, native proteins were solubilized, immunoprecipitated from rat brain extracts, and analyzed by immunoblotting. SNARE complexes comprising syntaxin 1, 25-kDa synaptosomal-associated protein (SNAP-25), and synaptobrevin 2 were coprecipitated with synaptotagmin I in the presence of ethylene glycol tetraacetic acid. The amount of coprecipitated proteins was significantly unaltered by the addition of Ca(2+) to the brain extract. To identify the component of the SNARE complex that bound to synaptotagmin, SNARE was coexpressed with synaptotagmin in HEK293 cells and immunoprecipitated. Syntaxin, but not SNAP-25 and synaptobrevin, bound to synaptotagmin in a Ca(2+)-independent manner, and the binding was abolished in the presence of 1M NaCl. Synaptotagmin contains 2 Ca(2+)-binding domains (C(2)A, C(2)B). Mutating the positively charged lysine residues in the putative effector-binding region of the C(2)B domain, which are critical for transmitter release, markedly inhibited synaptotagmin-syntaxin binding, while similar mutations in the C(2)A domain had no effect on binding. Synaptotagmin-syntaxin binding was reduced by mutating multiple negatively charged glutamate residues in the amino-terminal half of the syntaxin SNARE motif. These results indicate that synaptotagmin I binds to syntaxin 1 electrostatically through its C(2)B domain effector region in a Ca(2+)-independent fashion, providing biochemical evidence that synaptotagmin I binds SNARE complexes before Ca(2+) influx into presynaptic nerve terminals.


Assuntos
Cálcio/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação , Ratos , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sintaxina 1/química , Sintaxina 1/genética
15.
J Physiol Sci ; 73(1): 24, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828465

RESUMO

Mast cells are present in mucosal and connective tissues throughout the body. They synthesize and release a wide variety of bioactive molecules, such as histamine, proteases, and cytokines. In this study, we found that a population of connective tissue mast cells (CTMCs) stores and releases noradrenaline, originating from sympathetic nerves. Noradrenaline-storing cells, not neuronal fibers, were predominantly identified in the connective tissues of the skin, mammary gland, gastrointestinal tract, bronchus, thymus, and pancreas in wild-type mice but were absent in mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice. In vitro studies using bone marrow-derived mast cells revealed that extracellular noradrenaline was taken up but not synthesized. Upon ionomycin stimulation, noradrenaline was released. Electron microscopy analyses further suggested that noradrenaline is stored in and released from the secretory granules of mast cells. Finally, we found that noradrenaline-storing CTMCs express organic cation transporter 3 (Oct3), which is also known as an extraneuronal monoamine transporter, SLC22A3. Our findings indicate that mast cells may play a role in regulating noradrenaline concentration by storing and releasing it in somatic tissues.


Assuntos
Mastócitos , Proteínas Proto-Oncogênicas c-kit , Camundongos , Animais , Mastócitos/fisiologia , Norepinefrina , Tecido Conjuntivo , Pele
16.
Adv Sci (Weinh) ; 10(12): e2206542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786012

RESUMO

Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2 -terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.


Assuntos
Fator de Iniciação 4F em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
17.
Acta Med Okayama ; 65(1): 1-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21339790

RESUMO

Mitochondria are important cellular organelles in most metabolic processes and have a highly dynamic nature, undergoing frequent fission and fusion. The dynamic balance between fission and fusion plays critical roles in mitochondrial functions. In recent studies, several large GTPases have been identified as key molecular factors in mitochondrial fission and fusion. Moreover, the posttranslational modifications of these large GTPases, including phosphorylation, ubiquitination and SUMOylation, have been shown to be involved in the regulation of mitochondrial dynamics. Neurons are particularly sensitive and vulnerable to any abnormalities in mitochondrial dynamics, due to their large energy demand and long extended processes. Emerging evidences have thus indicated a strong linkage between mitochondria and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. In this review, we will describe the regulation of mitochondrial dynamics and its role in neurodegenerative diseases.


Assuntos
Mitocôndrias/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Humanos
18.
J Control Release ; 330: 788-796, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188824

RESUMO

Boron neutron capture therapy (BNCT) is a tumor selective therapy, the effectiveness of which depends on sufficient 10B delivery to and accumulation in tumors. In this study, we used self-assembling A6K peptide nanotubes as boron carriers and prepared new boron agents by simple mixing of A6K and BSH. BSH has been used to treat malignant glioma patients in clinical trials and its drug safety and availability have been confirmed; however, its contribution to BNCT efficacy is low. A6K nanotube delivery improved two major limitations of BSH, including absence of intracellular transduction and non-specific drug delivery to tumor tissue. Varying the A6K peptide and BSH mixture ratio produced materials with different morphologies-determined by electron microscopy-and intracellular transduction efficiencies. We investigated the A6K/BSH 1:10 mixture ratio and found high intracellular boron uptake with no toxicity. Microscopy observation showed intracellular localization of A6K/BSH in the perinuclear region and endosome in human glioma cells. The intracellular boron concentration using A6K/BSH was almost 10 times higher than that of BSH. The systematic administration of A6K/BSH via mouse tail vein showed tumor specific accumulation in a mouse brain tumor model with immunohistochemistry and pharmacokinetic study. Neutron irradiation of glioma cells treated with A6K/BSH showed the inhibition of cell proliferation in a colony formation assay. Boron delivery using A6K peptide provides a unique and simple strategy for next generation BNCT drugs.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanotubos de Peptídeos , Nanotubos , Animais , Boroidretos , Compostos de Boro , Humanos , Camundongos , Oligopeptídeos , Compostos de Sulfidrila
19.
Acta Neuropathol Commun ; 9(1): 29, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618763

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Proteína Rica em Cisteína 61/metabolismo , Progressão da Doença , Glioblastoma/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Macrófagos/imunologia , Camundongos , Análise de Sequência de RNA
20.
Nat Cancer ; 2(2): 174-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33644767

RESUMO

Glioblastoma (GBM) is a devastating human malignancy. GBM stem-like cells (GSCs) drive tumor initiation and progression. Yet, the molecular determinants defining GSCs in their native state in patients remain poorly understood. Here we used single cell datasets and identified GSCs at the apex of the differentiation hierarchy of GBM. By reconstructing the GSCs' regulatory network, we identified the YAP/TAZ coactivators as master regulators of this cell state, irrespectively of GBM subtypes. YAP/TAZ are required to install GSC properties in primary cells downstream of multiple oncogenic lesions, and required for tumor initiation and maintenance in vivo in different mouse and human GBM models. YAP/TAZ act as main roadblock of GSC differentiation and their inhibition irreversibly lock differentiated GBM cells into a non-tumorigenic state, preventing plasticity and regeneration of GSC-like cells. Thus, GSC identity is linked to a key molecular hub integrating genetics and microenvironmental inputs within the multifaceted biology of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/genética , Carcinogênese/patologia , Plasticidade Celular , Glioblastoma/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA