Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662769

RESUMO

The implementation of antiretroviral therapy (ART) has effectively restricted the transmission of Human Immunodeficiency Virus (HIV) and improved overall clinical outcomes. However, a complete cure for HIV remains out of reach, as the virus persists in a stable pool of infected cell reservoir that is resistant to therapy and thus a main barrier towards complete elimination of viral infection. While the mechanisms by which host proteins govern viral gene expression and latency are well-studied, the emerging regulatory functions of non-coding RNAs (ncRNA) in the context of T cell activation, HIV gene expression and viral latency have not yet been thoroughly explored. Here, we report the identification of the Cytoskeleton Regulator (CYTOR) long non-coding RNA (lncRNA) as an activator of HIV gene expression that is upregulated following T cell stimulation. Functional studies show that CYTOR suppresses viral latency by directly binding to the HIV promoter and associating with the cellular positive transcription elongation factor (P-TEFb) to activate viral gene expression. CYTOR also plays a global role in regulating cellular gene expression, including those involved in controlling actin dynamics. Depletion of CYTOR expression reduces cytoplasmic actin polymerization in response to T cell activation. In addition, treating HIV-infected cells with pharmacological inhibitors of actin polymerization reduces HIV gene expression. We conclude that both direct and indirect effects of CYTOR regulate HIV gene expression.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por HIV , HIV-1 , RNA Longo não Codificante , Latência Viral , Humanos , Infecções por HIV/virologia , Infecções por HIV/genética , HIV-1/genética , HIV-1/fisiologia , Células Jurkat , Ativação Linfocitária , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética
2.
Sci Adv ; 10(3): eadi4162, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241362

RESUMO

The Tat proteins of HIV-1 and simian immunodeficiency virus (SIV) are essential for activating viral transcription. In addition, Tat stimulates nuclear factor κB (NF-κB) signaling pathways to regulate viral gene expression although its molecular mechanism is unclear. Here, we report that Tat directly activates NF-κB through the interaction with TRAF6, which is an essential upstream signaling molecule of the canonical NF-κB pathway. This interaction increases TRAF6 oligomerization and auto-ubiquitination, as well as the synthesis of K63-linked polyubiquitin chains to further activate the NF-κB pathway and HIV-1 transcription. Moreover, ectopic expression of TRAF6 significantly activates HIV-1 transcription, whereas TRAF6 knockdown inhibits transcription. Furthermore, Tat-mediated activation of NF-κB through TRAF6 is conserved among HIV-1, HIV-2, and SIV isolates. Our study uncovers yet another mechanism by which HIV-1 subverts host transcriptional pathways to enhance its own transcription.


Assuntos
HIV-1 , NF-kappa B , Animais , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , HIV-1/metabolismo , Transdução de Sinais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA