Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37414545

RESUMO

Plants have evolved sex chromosomes independently in many lineages, and loss of separate sexes can also occur. In this study, we assembled a monoecious recently hexaploidized persimmon (Diospyros kaki), in which the Y chromosome has lost the maleness-determining function. Comparative genomic analysis of D. kaki and its dioecious relatives uncovered the evolutionary process by which the nonfunctional Y chromosome (or Ymonoecy) was derived, which involved silencing of the sex-determining gene, OGI, approximately 2 million years ago. Analyses of the entire X and Ymonoecy chromosomes suggested that D. kaki's nonfunctional male-specific region of the Y chromosome (MSY), which we call a post-MSY, has conserved some characteristics of the original functional MSY. Specifically, comparing the functional MSY in Diospyros lotus and the nonfunctional "post-MSY" in D. kaki indicated that both have been rapidly rearranged, mainly via ongoing transposable element bursts, resembling structural changes often detected in Y-linked regions, some of which can enlarge the nonrecombining regions. The recent evolution of the post-MSY (and possibly also MSYs in dioecious Diospyros species) therefore probably reflects these regions' ancestral location in a pericentromeric region, rather than the presence of male-determining genes and/or genes controlling sexually dimorphic traits.


Assuntos
Diospyros , Diospyros/genética , Cromossomo Y , Cromossomos Sexuais/genética
2.
Plant Cell Physiol ; 64(1): 94-106, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222360

RESUMO

Rice is the model C3 crop for investigating the starch biosynthesis mechanism in endosperm because of its importance in grain production. However, little is known about starch biosynthesis in the vegetative organs of rice. In this study, we used novel rice mutants by inserting Tos17 into the starch synthase (SS) IIIb gene, which is mainly expressed in the leaf sheath (LS) and leaf blade (LB), and an ss1 mutant to clarify the differences in roles among SS isozymes during starch biosynthesis. Native polyacrylamide gel electrophoresis (PAGE)/activity staining for SS, using LS and LB of ss mutants, revealed that the lowest migrating SS activity bands on the gel were derived from SSIIIb activity and those of two ss3b mutants were not detected. The apparent amylose content of LS starch of ss3b mutants increased. Moreover, the chain-length distribution and size-exclusion chromatography analysis using ss mutants showed that SSIIIb and SSI synthesize the B2-B3 chain and A-B1 chain of amylopectin in the LS and LB respectively. Interestingly, we also found that starch contents were decreased in the LS and LB of ss3b mutants, although SSI deficiency did not affect the starch levels. All these results indicated that SSIIIb synthesizes the long chain of amylopectin in the LS and LB similar to SSIIIa in the endosperm, while SSI synthesizes the short chain in the vegetative organ as the same in the endosperm.


Assuntos
Oryza , Sintase do Amido , Amilopectina , Oryza/genética , Sintase do Amido/genética , Sementes/genética , Amido , Amilose
3.
Theor Appl Genet ; 136(4): 94, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010621

RESUMO

KEY MESSAGE: Barley double mutants in two genes involved in starch granule morphology, HvFLO6 and HvISA1, had impaired starch accumulation and higher grain sugar levels than either single mutant. Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.


Assuntos
Hordeum , Oryza , Endosperma/genética , Endosperma/metabolismo , Hordeum/genética , Açúcares , Melhoramento Vegetal , Amido/metabolismo , Glucanos/metabolismo , Fenótipo , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835139

RESUMO

Glutinous rice accumulates amylose-free starch and is utilized for rice cakes and crackers, owing to the loss of the Waxy gene which encodes granule-bound starch synthase I (GBSSI). Starch synthase IIa (SSIIa) elongates amylopectin chains with a degree of polymerization (DP) of 6-12 to 13-24 and greatly influences starch properties. To elucidate the relationship between the branch length of amylopectin and the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice, three allelic near isogenic lines with high, low, or no SSIIa activity were generated (designated as SS2a wx, ss2aL wx, and ss2a wx, respectively). Chain length distribution analyses revealed that ss2a wx exhibited the highest short chain (DP < 12) number and lowest gelatinization temperature, whereas SS2a wx showed the opposite results. Gel filtration chromatography showed that the three lines contained essentially no amylose. Viscoelasticity analyses of rice cakes stored at low temperature for different durations revealed that ss2a wx maintained softness and elasticity for up to 6 days, while SS2a wx hardened within 6 h. Sensory evaluation was consistent with mechanical evaluation. The relationship of amylopectin structure with the thermal and rheological properties, viscoelasticity, and eating quality of glutinous rice is discussed.


Assuntos
Amilopectina , Oryza , Amilopectina/química , Oryza/genética , Alelos , Amido/química , Proteínas de Plantas/genética , Amilose/química
5.
Plant Mol Biol ; 108(4-5): 325-342, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34287741

RESUMO

KEY MESSAGE: Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.


Assuntos
Endosperma/enzimologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Cruzamentos Genéticos , Regulação Viral da Expressão Gênica , Isoamilase/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Sintase do Amido/genética , Açúcares/metabolismo
6.
Plant Mol Biol ; 108(4-5): 379-398, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34671919

RESUMO

KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.


Assuntos
Oryza/enzimologia , Sintase do Amido/metabolismo , Amido/metabolismo , Configuração de Carboidratos , Cruzamentos Genéticos , Pleiotropia Genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oryza/química , Oryza/genética , Melhoramento Vegetal , Sementes/anatomia & histologia , Amido/química , Sintase do Amido/química , Sintase do Amido/genética
7.
Plant Mol Biol ; 108(4-5): 497-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083581

RESUMO

KEY MESSAGE: Mutation of the BEIIb gene in an isa1 mutant background mitigates the negative effect of the ISA1 mutation on grain filling, and facilitates recovery of amyloplast formation in rice endosperm. In this study, the effect of branching enzyme IIb and isoamylase 1 deficiency on starch properties was demonstrated using high resistant starch rice lines, Chikushi-kona 85 and EM129. Both lines harbored a mutation in the BEIIb and ISA1 genes and showed no BEIIb and ISA1 activity, implying that both lines are beIIb isa1 double mutants. The amylopectin long chain and apparent amylose content of both mutant lines were higher than those of the wild-type. While both mutants contained loosely packed, round starch grains, a trait specific to beIIb mutants, they also showed collapsed starch grains at the center of the endosperm, a property specific to isa1 mutants. Furthermore, beIIb isa1 double mutant F2 lines derived from a cross between Chikushi-kona 85 and Nishihomare (wild-type cultivar) showed significantly heavier seed weight than the beIIb and isa1 single mutant lines. These results suggest that co-occurrence of beIIb and isa1 mutant alleles in a single genetic background mitigates the negative effect of the isa1 allele on grain filling, and contributes to recovery of the amyloplast formation defect in the isa1 single mutant.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Isoamilase/genética , Oryza/genética , Plastídeos/fisiologia , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Grão Comestível , Genótipo , Isoamilase/metabolismo , Mutação , Oryza/enzimologia , Oryza/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142691

RESUMO

Early flowering trait is essential for rice cultivars grown at high latitude since delayed flowering leads to seed development at low temperature, which decreases yield. However, early flowering at high temperature promotes the formation of chalky seeds with low apparent amylose content and high starch gelatinization temperature, thus affecting grain quality. Deletion of starch synthase IIa (SSIIa) shows inverse effects of high temperature, and the ss2a mutant shows higher apparent amylose content and lower gelatinization temperature. Heading date 1 (Hd1) is the major regulator of flowering time, and a nonfunctional hd1 allele is required for early flowering. To understand the relationship among heading date, starch properties, and yield, we generated and characterized near-isogenic rice lines with ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes. The ss2a Hd1 line showed the highest plant biomass; however, its grain yield varied by year. The ss2a Hd1 hd1 showed higher total grain weight than ss2a hd1. The ss2a hd1 line produced the lowest number of premature seeds and showed higher gelatinization temperature and lower apparent amylose content than ss2a Hd1. These results highlight Hd1 as the candidate gene for developing high-yielding rice cultivars with the desired starch structure.


Assuntos
Oryza , Amilose , Grão Comestível/genética , Oryza/genética , Proteínas de Plantas/genética , Amido/química , Temperatura
9.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158893

RESUMO

Bakanae disease, caused by Fusarium fujikuroi, is an economically important seed-borne disease of rice. F. fujikuroi is horizontally transmitted to rice flowers and vertically transmitted to the next generation via seeds. The fungus induces typical symptoms such as abnormal tissue elongation and etiolation. Sanitation of seed farms and seed disinfection are the only effective means to control bakanae disease at present; however, the efficacy of these methods is often insufficient. Therefore, alternative and innovative control methods are necessary. We developed a novel method for applying nonpathogenic fusaria as biocontrol agents by spraying spore suspensions onto rice flowers to reduce the incidence of seed-borne bakanae. We visualized the interaction between Fusarium commune W5, a nonpathogenic fusarium, and Fusarium fujikuroi using transformants expressing two different fluorescent proteins on/in rice plants. W5 inhibited hyphal extension of F. fujikuroi on/in rice flowers and seedlings, possibly by competing with the pathogen, and survived on/in rice seeds for at least 6 months.IMPORTANCE We demonstrated that a spray treatment of rice flowers with the spores of nonpathogenic fusaria mimicked the disease cycle of the seed-borne bakanae pathogen Fusarium fujikuroi and effectively suppressed the disease. Spray treatment of nonpathogenic fusaria reduced the degree of pathogen invasion of rice flowers and vertical transmission of the pathogen to the next plant generation via seeds, thereby controlling the bakanae disease. The most promising isolate, F. commune W5, colonized seeds and seedlings via treated flowers and successfully inhibited pathogen invasion, suggesting that competition with the pathogen was the mode of action. Seed-borne diseases are often controlled by seed treatment with chemical fungicides. Establishing an alternative method is a pressing issue from the perspectives of limiting fungicide resistance and increasing food security. This work provides a potential solution to these issues using a novel application technique to treat rice flowers with biocontrol agents.


Assuntos
Flores/microbiologia , Fusarium , Oryza/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Esporos Fúngicos
10.
Plant J ; 97(6): 1073-1088, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523657

RESUMO

The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.


Assuntos
Metabolismo dos Carboidratos , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido/biossíntese , Zea mays/genética , Regulação para Baixo , Endosperma/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Regulação para Cima
11.
Biosci Biotechnol Biochem ; 84(2): 365-371, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690219

RESUMO

Rice with double mutation of starch synthase IIIa and branching enzyme IIb (ss3a/be2b) has much higher amounts of apparent amylose and resistant starch (RS) than usual varieties. In this study, we conducted two randomized, single-blind, crossover trials to investigate the effect of single ingestion of two processed foods composed of ss3a/be2b mutant rice on postprandial blood glucose and insulin response in healthy adults, compared to those of usual cultivar. In trial 1, of ingestion of rice crackers, the incremental area under the curves of glucose (IAUCglc) and insulin (IAUCins) in RS group was significantly lower than in the control group. In trial 2, of the ingestion of cooked rice, IAUCglc in the RS group was significantly lower than in the control group. These results showed that the ss3a/be2b-mutant rice cracker and cooked rice having high RS can attenuate postprandial blood glucose and insulin response.


Assuntos
Glicemia/análise , Insulina/sangue , Oryza , Período Pós-Prandial , Amido , Adulto , Culinária , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Nutritivo , Método Simples-Cego , Adulto Jovem
12.
Tohoku J Exp Med ; 250(2): 129-135, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115495

RESUMO

Pulmonary lymphoma is rare, accounting for < 1% of primary lung cancers. Most primary pulmonary lymphomas (PPL) are low-grade mucosa-associated lymphoid tissue (MALT)-type, and among PPL, diffuse large B-cell lymphoma (DLBCL) is extremely rare. In contrast, there has been an increase in the incidence of DLBCL among patients with autoimmune disorders and recurrent or chronic bacterial infection. A subset of DLBCL has been reported to develop through transformation of preexisting or concurrent MALT. The respiratory symptoms are non-specific, and the chest X-ray findings demonstrate the presence of interstitial and mixed alveolar infiltrates, nodular lesions, and localized homogeneous consolidations; the diagnosis of pulmonary DLBCL is thus challenging and often leads to a misdiagnosis or delayed diagnosis. We herein report a case of DLBCL which was assumed to have arisen from the lesion of chronic atelectasis that was successfully diagnosed by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). A 74-year-old woman with diffuse bronchiectasis and chronic atelectasis of the left lower lobe suffered from productive cough and high fever. Increased airway filling with mucoid secretion was repeatedly observed within the area of atelectasis with bronchiectasis, and left lower lobe atelectasis developed. Subsequently, the hilar and mediastinal lymph nodes gradually became enlarged, and DLBCL was pathologically confirmed. In the present case, DLBCL was considered to have arisen in the lesion of chronic atelectasis. Physicians should recognize that DLBCL may develop at the site of chronic atelectasis during disease course of diffuse bronchiectasis, and thus DLBCL may be misdiagnosed as superimposed infection of chronic atelectasis.


Assuntos
Neoplasias Pulmonares/patologia , Linfoma de Células B/patologia , Atelectasia Pulmonar/patologia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Prednisolona/uso terapêutico , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/tratamento farmacológico , Tomografia Computadorizada por Raios X , Vincristina/uso terapêutico
13.
Plant Cell Physiol ; 60(5): 961-972, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690625

RESUMO

CO2-responsive CCT protein (CRCT) is suggested to be a positive regulator of starch biosynthesis in the leaf sheaths of rice, regulating the expression levels of starch biosynthesis-related genes. In this study, the effects of CRCT expression levels on the expression of starch biosynthesis-related enzymes and the quality of starch were studied. Using native-PAGE/activity staining and immunoblotting, we found that the protein levels of starch synthase I, branching enzyme I, branching enzyme IIa, isoamylase 1 and phosphorylase 1 were largely correlated with the CRCT expression levels in the leaf sheaths of CRCT transgenic lines. In contrast, the CRCT expression levels largely did not affect the expression levels and/or activities of starch biosynthesis-related enzymes in the leaf blades and endosperm tissues. The analysis of the chain-length distribution of starch in the leaf sheaths showed that short chains with a degree of polymerization from 5 to 14 were increased in the overexpression lines but decreased in the knockdown lines. The amylose content of starch in the leaf sheath was greatly increased in the overexpression lines. In contrast, the molecular weight of the amylopectin of starch in the leaf sheath of overexpression lines did not change compared with those of the non-transgenic rice. These results suggest that CRCT can control the quality and the quantity of starch in the leaf sheath by regulating the expression of particular starch biosynthesis-related enzymes.


Assuntos
Dióxido de Carbono/metabolismo , Oryza/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilose/metabolismo , Isoamilase/metabolismo , Sintase do Amido/metabolismo
14.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818769

RESUMO

(1) Background: Silene latifolia is a dioecious plant, whose sex is determined by XY-type sex chromosomes. Microbotryum lychnidis-dioicae is a smut fungus that infects S. latifolia plants and causes masculinization in female flowers, as if Microbotryum were acting as a sex-determining gene. Recent large-scale sequencing efforts have promised to provide candidate genes that are involved in the sex determination machinery in plants. These candidate genes are to be analyzed for functional characterization. A virus vector can be a tool for functional gene analyses; (2) Methods: To develop a viral vector system in S. latifolia plants, we selected Apple latent spherical virus (ALSV) as an appropriate virus vector that has a wide host range; (3) Results: Following the optimization of the ALSV inoculation method, S. latifolia plants were infected with ALSV at high rates in the upper leaves. In situ hybridization analysis revealed that ALSV can migrate into the flower meristems in S. latifolia plants. Successful VIGS (virus-induced gene silencing) in S. latifolia plants was demonstrated with knockdown of the phytoene desaturase gene. Finally, the developed method was applied to floral organ genes to evaluate its usability in flowers; (4) Conclusion: The developed system enables functional gene analyses in S. latifolia plants, which can unveil gene functions and networks of S. latifolia plants, such as the mechanisms of sex determination and fungal-induced masculinization.


Assuntos
Inativação Gênica , Secoviridae/fisiologia , Silene/genética , Regulação para Baixo/genética , Flores/virologia , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Fenótipo , Doenças das Plantas/virologia , Reprodutibilidade dos Testes
15.
J Biol Chem ; 292(13): 5465-5475, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28193843

RESUMO

Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, Cyanothece sp. ATCC 51142 has three isoforms (BE1, BE2, and BE3) with distinct enzymatic properties, suggesting that investigations of these enzymes might provide unique insights into this system. Here, we report the crystal structure of ligand-free wild-type BE1 (residues 5-759 of 1-773) at 1.85 Å resolution. The enzyme consists of four domains, including domain N, carbohydrate-binding module family 48 (CBM48), domain A containing the catalytic site, and domain C. The central domain A displays a (ß/α)8-barrel fold, whereas the other domains adopt ß-sandwich folds. Domain N was found in a new location at the back of the protein, forming hydrogen bonds and hydrophobic interactions with CBM48 and domain A. Site-directed mutational analysis identified a mutant (W610N) that bound maltoheptaose with sufficient affinity to enable structure determination at 2.30 Å resolution. In this structure, maltoheptaose was bound in the active site cleft, allowing us to assign subsites -7 to -1. Moreover, seven oligosaccharide-binding sites were identified on the protein surface, and we postulated that two of these in domain A served as the entrance and exit of the donor/acceptor glucan chains, respectively. Based on these structures, we propose a substrate binding model explaining the mechanism of glycosylation/deglycosylation reactions catalyzed by BE.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Cyanothece/química , Modelos Moleculares , Domínios Proteicos , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalização , Cianobactérias , Glucanos/metabolismo , Glicosilação , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
16.
BMC Plant Biol ; 18(1): 59, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636002

RESUMO

BACKGROUND: Starch is the major component of cereal grains and is composed of essentially linear amylose and highly branched amylopectin. The properties and composition of starch determine the use and value of grains and their products. Starch synthase (SS) I, SSIIa, and SSIIIa play central roles in amylopectin biosynthesis. These three SS isozymes also affect seed development, as complete loss of both SSI and SSIIIa under reduced SSIIa activity in rice lead to sterility, whereas presence of minimal SSI or SSIIIa activity is sufficient for generating fertile seeds. SSs, branching enzymes, and/or debranching enzymes form protein complexes in cereal. However, the relationship between starch properties and the formation of protein complexes remain largely unknown. To better understand this phenomenon, properties of starch and protein complex formation were analyzed using developing mutant rice seeds (ss1 L /ss2a L /ss3a) in which all three major SS activities were reduced. RESULTS: The SS activity of ss1 L /ss2a L /ss3a was 25%-30% that of the wild-type. However, the grain weight of ss1 L /ss2a L /ss3a was 89% of the wild-type, 55% of which was starch, showing considerable starch synthesis. The reduction of soluble SS activity in ss1 L /ss2a L /ss3a resulted in increased levels of ADP-glucose pyrophosphorylase and granule-bound starch synthase I, which are responsible for substrate synthesis and amylose synthesis, respectively. Together, these features led to an increase in apparent amylose content (34%) in ss1 L /ss2a L /ss3a compared with wild-type (20%). Gel filtration chromatography of the soluble proteins in ss1 L /ss2a L /ss3a showed that the majority of the starch biosynthetic enzymes maintained the similar elution patterns as wild-type, except that the amounts of high-molecular-weight SSI (> 300 kDa) were reduced and SSIIa of approximately 200-300 kDa were present instead of those > 440 kDa, which predominate in wild-type. Immuno-precipitation analyses suggested that the interaction between the starch biosynthetic enzymes maybe reduced or weaker than in wild-type. CONCLUSIONS: Although major SS isozymes were simultaneously reduced in ss1 L /ss2a L /ss3a rice, active protein complexes were formed with a slightly altered pattern, suggesting that the assembly of protein complexes may be complemented among the SS isozymes. In addition, ss1 L /ss2a L /ss3a maintained the ability to synthesize starch and accumulated less amylopectin and more amylose in starch.


Assuntos
Oryza/enzimologia , Oryza/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Sintase do Amido/metabolismo , Amido/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo
17.
Br J Nutr ; 119(9): 970-980, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532765

RESUMO

Diabetes mellitus is a metabolic disease spreading worldwide that has been reported to worsen the development and progression of other diseases (cancer, vascular diseases and dementia). To establish functional rice lines with anti-postprandial hyperglycaemic effects, we developed mutant rice lines, which lack one or two gene(s) related to starch synthesis, and evaluated their effects. Powder of mutant rice lines or other grains was loaded to rats fasted overnight (oral grain powder loading test). Incremental area under time-concentration curves (iAUC) were calculated with monitored blood glucose levels. Rice lines with anti-postprandial hyperglycaemic effects were separated by cluster analysis with calculated iAUC. A double mutant rice #4019 (starch synthase IIIa (ss3a)/branching enzyme IIb (be2b)), one of the screened mutant rice lines, was fed to Goto-Kakizaki (GK) rats, an animal model for type 2 diabetes, for 5 weeks. Plasma levels of C-peptide, a marker of pancreatic insulin secretion, were measured with ELISA. For in vitro study, a rat pancreatic cell line was cultured with a medium containing rat serum which was sampled from rats fed #4019 diet for 2 d. After 24-h of incubation, an insulin secretion test was performed. Through the oral rice powder loading test, seven rice lines were identified as antidiabetic rice lines. The intake of #4019 diet increased plasma C-peptide levels of GK rats. This result was also observed in vitro. In rat serum added to cell medium, ornithine was significantly increased by the intake of #4019. In conclusion, the mutant rice #4019 promoted pancreatic insulin secretion via elevation of serum ornithine levels.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Diabetes Mellitus Tipo 2/prevenção & controle , Hipoglicemiantes/farmacologia , Secreção de Insulina/genética , Oryza/genética , Sintase do Amido/genética , Enzima Ramificadora de 1,4-alfa-Glucana/deficiência , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Ração Animal , Animais , Área Sob a Curva , Glicemia , Análise por Conglomerados , Diabetes Mellitus Tipo 2/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Tolerância a Glucose , Glicilglicina/sangue , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Masculino , Mutação , Ornitina/sangue , Oryza/classificação , Oryza/enzimologia , Oryza/metabolismo , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Sintase do Amido/deficiência , Sintase do Amido/metabolismo
18.
Plant Mol Biol ; 94(4-5): 399-417, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466433

RESUMO

The lengths of amylopectin-branched chains are precise and influence the physicochemical properties of starch, which determine starch functionality. Three major isozymes of starch synthases (SSs), SSI, SSII(a), and SSIII(a), are primarily responsible for amylopectin chain elongation in the storage tissues of plants. To date, the majority of reported rice mutants were generated using japonica cultivars, which have almost inactive SSIIa. Although three SSs share some overlapping chain length preferences, whether they complement each other remains unknown due to the absence of suitable genetic combinations of materials. In this study, rice ss1/SS2a/SS3a and SS1/SS2a/ss3a were newly generated, and the chain length distribution patterns of all the possible combinations of presence and absence of SSI, SSIIa, and SSIIIa activities were compared. This study demonstrated that SSIIa can complement most SSI functions that use glucan chains with DP 6-7 to generate DP 8-12 chains but cannot fully compensate for the elongation of DP 16-19 chains. This suggests that SSIIa preferentially elongates outer but not inner chains of amylopectin. In addition, the results revealed that neither SSI nor SSIIIa compensate for SSIIa. Neither SSI nor SSIIa compensate for elongation of DP >30 by SSIIIa. SSIIa could not resolve the pleiotropic increase of SSI caused by the absence of SSIIIa; instead, SSIIa further elongated those branches elongated by SSI. These results revealed compensatory differences among three major SS isozymes responsible for lengths of amylopectin branches.


Assuntos
Amilopectina/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Amilopectina/química , Endosperma/química , Endosperma/metabolismo , Genótipo , Estrutura Molecular , Mutagênese Insercional , Oryza/genética , Amido/biossíntese , Sintase do Amido/classificação , Sintase do Amido/genética
20.
Biol Reprod ; 97(5): 772-780, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045563

RESUMO

Controllable transgene expression systems are indispensable tools for the production of animal models of disease to investigate protein functions at defined periods. However, in nonhuman primates that share genetic, physiological, and morphological similarities with humans, genetic modification techniques have not been well established; therefore, the establishment of novel transgenic models with controllable transgene expression systems will be valuable tools to understand pathological mechanism of human disease. In the present study, we successfully generated transgenic marmosets using a tetracyclin-inducible transgene expression (tet-on) system as a neurodegenerative disease model. The mutant human ataxin 3 gene controlled by the tet-on system was introduced into marmoset embryos via lentiviral transduction, and 34 transgene-introduced embryos were transferred into the uteri of surrogate mothers. Seven live offspring (TET1-7) were obtained, of which four were transgenic. Fibroblasts from TET1 and 3 revealed that inducible transgene expression had occurred after treatment with 10 µg/mL of doxycycline, while treatment with doxycycline via drinking water resulted in 1.7- to 1.8-fold inducible transgene expression compared with before treatment. One transgenic second-generation offspring (TET3-3) was obtained from TET3, and doxycycline-inducible transgene expression in its fibroblasts showed that TET3-3 maintained a high transgene expression level that matched its parent. In conclusion, we established a novel transgenic marmoset line carrying the mutant human ataxin 3 gene controlled by the tet-on system. The development of nonhuman primate models with controllable transgene expression systems will be useful for the identification of disease biomarkers and evaluation of the efficacy and metabolic profiles of therapeutic candidates.


Assuntos
Ataxina-3/genética , Callithrix/genética , Doenças Neurodegenerativas/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Doxiciclina , Orelha , Feminino , Fibroblastos/fisiologia , Masculino , Regiões Promotoras Genéticas , Injeções de Esperma Intracitoplásmicas , Transcrição Gênica , Ativação Transcricional , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA