Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30392956

RESUMO

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Ácidos Teicoicos/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética
2.
J Biol Chem ; 300(7): 107430, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825008

RESUMO

The nuclear envelope (NE) is a permeable barrier that maintains nuclear-cytoplasmic compartmentalization and ensures nuclear function; however, it ruptures in various situations such as mechanical stress and mitosis. Although the protein components for sealing a ruptured NE have been identified, the mechanism by which lipid components are involved in this process remains to be elucidated. Here, we found that an inner nuclear membrane (INM) protein Bqt4 directly interacts with phosphatidic acid (PA) and serves as a platform for NE maintenance in the fission yeast Schizosaccharomyces pombe. The intrinsically disordered region (IDR) of Bqt4, proximal to the transmembrane domain, binds to PA and forms a solid aggregate in vitro. Excessive accumulation of Bqt4 IDR in INM results in membrane overproliferation and lipid droplet formation in the nucleus, leading to centromere dissociation from the NE and chromosome missegregation. Our findings suggest that Bqt4 IDR controls nuclear membrane homeostasis by recruiting PA to the INM, thereby maintaining the structural integrity of the NE.

3.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38006376

RESUMO

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Assuntos
Alcaligenes , Lipídeo A , Animais , Camundongos , Lipídeo A/farmacologia , Adjuvantes Imunológicos/farmacologia , Células Dendríticas
4.
Curr Issues Mol Biol ; 46(1): 909-922, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275672

RESUMO

Chisocheton plants from the family Meliaceae have traditionally been used to treat several diseases; however, scientific evidence is limited. The most abundant chemical constituents of this plant are the limonoids, which are known for their various biological activities, including anti-inflammatory effects. However, the anti-inflammatory effects and underlying mechanisms of action of the constituents of Chisocheton plants have not been fully explored. In this report, we evaluated the anti-inflammatory activity of 17 limonoid compounds from Chisocheton plant primarily by measuring their inhibitory effects on the production of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, and MCP-1, in LPS-stimulated THP-1 cells using an ELISA assay. Compounds 3, 5, 9, and 14-17 exhibited significant activity in inhibiting the evaluated pro-inflammatory markers, with IC50 values less than 20 µM and a high selectivity index (SI) range. Compounds 3, 5, 9, and 15 significantly suppressed the expression of phosphorylated p38 MAPK in THP-1 cells stimulated with LPS. These findings support the use of limonoids from Chisocheton plants as promising candidates for anti-inflammatory therapy.

5.
EMBO J ; 39(12): e101732, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378734

RESUMO

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Assuntos
Gangliosídeo G(M3)/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/genética , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Monócitos/química , Obesidade/genética , Multimerização Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética
6.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891856

RESUMO

Astatine (211At) is a cyclotron-produced alpha emitter with a physical half-life of 7.2 h. In our previous study, the 211At-labeled prostate-specific membrane antigen (PSMA) compound ([211At]PSMA-5) exhibited excellent tumor growth suppression in a xenograft model. We conducted preclinical biodistribution and toxicity studies for the first-in-human clinical trial. [211At]PSMA-5 was administered to both normal male ICR mice (n = 85) and cynomolgus monkeys (n = 2). The mice were divided into four groups for the toxicity study: 5 MBq/kg, 12 MBq/kg, 35 MBq/kg, and vehicle control, with follow-ups at 1 day (n = 10 per group) and 14 days (n = 5 per group). Monkeys were observed 24 h post-administration of [211At]PSMA-5 (9 MBq/kg). Blood tests and histopathological examinations were performed at the end of the observation period. Blood tests in mice indicated no significant myelosuppression or renal dysfunction. However, the monkeys displayed mild leukopenia 24 h post-administration. Despite the high accumulation in the kidneys and thyroid, histological analysis revealed no abnormalities. On day 1, dose-dependent single-cell necrosis/apoptosis was observed in the salivary glands of mice and intestinal tracts of both mice and monkeys. Additionally, tingible body macrophages in the spleen and lymph nodes indicated phagocytosis of apoptotic B lymphocytes. Cortical lymphopenia (2/10) in the thymus and a decrease in the bone marrow cells (9/10) were observed in the 35 MBq/kg group in mice. These changes were transient, with no irreversible toxicity observed in mice 14 days post-administration. This study identified no severe toxicities associated with [211At]PSMA-5, highlighting its potential as a next-generation targeted alpha therapy for prostate cancer. The sustainable production of 211At using a cyclotron supports its applicability for clinical use.


Assuntos
Camundongos Endogâmicos ICR , Neoplasias da Próstata , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Camundongos , Distribuição Tecidual , Astato/farmacocinética , Astato/química , Partículas alfa/uso terapêutico , Humanos , Macaca fascicularis , Glutamato Carboxipeptidase II/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química
7.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256007

RESUMO

Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Radioisótopos , Humanos , Masculino , Meia-Vida , Medicina Nuclear , Neoplasias da Próstata/tratamento farmacológico , Radioisótopos/uso terapêutico
8.
Angew Chem Int Ed Engl ; 63(24): e202402922, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581637

RESUMO

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.


Assuntos
Acetobacter , Lipídeo A , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/síntese química , Humanos , Camundongos , Acetobacter/química , Animais , Oligossacarídeos/química , Oligossacarídeos/síntese química , Glicosilação
9.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37344812

RESUMO

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Bicamadas Lipídicas , Antígenos , Adjuvantes Imunológicos , Peptídeos
10.
Eur J Nucl Med Mol Imaging ; 50(3): 849-858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344651

RESUMO

PURPOSE: Targeted α-therapy (TAT) for prostate-specific membrane antigen (PSMA) is a promising treatment for metastatic castration-resistant prostate cancer (CRPC). Astatine is an α-emitter (half-life=7.2 h) that can be produced by a 30-MeV cyclotron. This study evaluated the treatment effect of 211At-labeled PSMA compounds in mouse xenograft models. METHODS: Tumor xenograft models were established by subcutaneous transplantation of human prostate cancer cells (LNCaP) in NOD/SCID mouse. [211At]PSMA1, [211At]PSMA5, or [211At]PSMA6 was administered to LNCaP xenograft mice to evaluate biodistribution at 3 and 24 h. The treatment effect was evaluated by administering [211At]PSMA1 (0.40 ± 0.07 MBq), [211At]PSMA5 (0.39 ± 0.03 MBq), or saline. Histopathological evaluation was performed for the at-risk organs at 3 and 6 weeks after administration. RESULTS: [211At]PSMA5 resulted in higher tumor retention compared to [211At]PSMA1 and [211At]PSMA6 (30.6 ± 17.8, 12.4 ± 4.8, and 19.1 ± 4.5 %ID/g at 3 h versus 40.7 ± 2.6, 8.7 ± 3.5, and 18.1 ± 2.2%ID/g at 24 h, respectively), whereas kidney excretion was superior in [211At]PSMA1 compared to [211At]PSMA5 and [211At]PSMA6. An excellent treatment effect on tumor growth was observed after [211At]PSMA5 administration. [211At]PSMA1 also showed a substantial treatment effect; however, the tumor size was relatively larger compared to that with [211At]PSMA5. In the histopathological evaluation, regenerated tubules were detected in the kidneys at 3 and 6 weeks after the administration of [211At]PSMA5. CONCLUSION: TAT using [211At]PSMA5 resulted in excellent tumor growth suppression with minimal side effects in the normal organs. [211At]PSMA5 should be considered a new possible TAT for metastatic CRPC, and translational prospective trials are warranted.


Assuntos
Astato , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Astato/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Distribuição Tecidual , Estudos Prospectivos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/patologia , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/uso terapêutico
11.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298546

RESUMO

Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody exhibited a superior effect compared to its conventional counterparts. This study paves the way for organelle-selective drug delivery.


Assuntos
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapêutico , Sistemas de Liberação de Medicamentos , Núcleo Celular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
12.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240044

RESUMO

Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.


Assuntos
Fibroblastos , Polietilenoglicóis , Humanos , Animais , Camundongos , Células HEK293 , Piperazina/farmacologia , Polietilenoglicóis/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio
13.
Angew Chem Int Ed Engl ; 62(25): e202303750, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37042088

RESUMO

We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.


Assuntos
Anticorpos , Polissacarídeos , Polissacarídeos/metabolismo , Membrana Celular/metabolismo , Ramnose
14.
Angew Chem Int Ed Engl ; 62(30): e202304779, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37083035

RESUMO

Antibody dynamics on membranes, such as endocytosis and clustering, are vital in determining antibody functions. In this study, we demonstrated that glycan conjugation can modulate antibody dynamics through the glycan-lectin interaction to regulate its potency. The anti-HER2 antibody, an anti-breast-cancer antibody, was conjugated with galactose-containing N-glycan, and its internalization was suppressed by interaction with galectin-3, leading to enhanced complement-dependent cytotoxic (CDC) activity. This glycan-antibody conjugate is proposed as a new approach to modulate antibody activity and may provide an alternative strategy for redeveloping antibody drugs that do not exhibit sufficient activity.


Assuntos
Antineoplásicos , Imunoconjugados , Lectinas , Polissacarídeos
15.
Angew Chem Int Ed Engl ; 62(13): e202218655, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719065

RESUMO

Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.


Assuntos
Thermococcus , Inositol/metabolismo , Polissacarídeos/metabolismo
16.
Chemistry ; 28(62): e202202284, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35880578

RESUMO

We describe the synthesis and characterization of a photoactivated boron-based Lewis acid catalyst based on a cage-shaped triphenolic ligand with three pyrenylmethyl moieties. The obtained cage-shaped borate functioned as a photoactivated Lewis acid catalyst thanks to the flexible three pyrenylmethyl moieties. The deformation of the cage-shaped scaffold driven by intramolecular excimer formations of the pyrenes is a critical factor in realizing the photoactivation. Mannich-type reactions and glycosylations significantly were accelerated under 370 nm light irradiations. It is noteworthy that various glycosyl fluorides, which are not easily activated in photocatalytic systems due to their high C-F bond stability, are activated by the photoimproved catalytic activity of the catalyst.


Assuntos
Boratos , Ácidos de Lewis , Ácidos de Lewis/química , Glicosilação , Catálise , Boro
17.
Chemistry ; 28(61): e202201848, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35880726

RESUMO

We have synthesized B-antigen-displaying dendrimers (16-mers) with different sizes and evaluated their affinity to their IgM antibody in order to investigate which design features lead to effective multivalency. Unexpectedly, the smallest dendrimer, which cannot chelate the multiple binding sites of IgM, clearly exhibited multivalency, together with an affinity similar to or higher than those of the larger dendrimers. These results indicate that the statistical rebinding model, which involves the rapid exchange of clustered glycans, significantly contributes to the multivalency of glycodendrimers. Namely, in the design of glycodendrimers, high-density glycan presentation to enhance statistical rebinding should be considered in addition to the ability to chelate multiple binding sites. This notion stands in contrast to the currently prevailing scientific consensus, which prioritizes the chelation model. This study thus provides new and important guidelines for molecular design of glycodendrimers.


Assuntos
Dendrímeros , Dendrímeros/química , Polissacarídeos , Sítios de Ligação
18.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555151

RESUMO

This study confirmed the effect of sodium/iodine symporter (NIS) expression on existing drugs by in vitro and in vivo tests using cultured cell lines. The tumor growth inhibitory effect of sodium astatide ([211At]NaAt) was evaluated by in vitro and in vivo tests using human thyroid cancer cells (K1, K1/NIS and K1/NIS-DOX). NIS expression in cancer cells was controlled using the Tet-On system. [131I]NaI was used as control existing drug. From the results of the in vitro studies, the mechanism of [211At]NaAt uptake into thyroid cancer cells is mediated by NIS, analogous to [131I]NaI, and the cellular uptake rate correlates with the expression level of NIS. [211At]NaAt's ability to inhibit colony formation was more than 10 times that of [131I]NaI per becquerel (Bq), and [211At]NaAt's DNA double-strand breaking (DSB) induction was more than ten times that of [131I]NaI per Bq, and [211At]NaAt was more than three times more cytotoxic than [131I]NaI (at 1000 kBq each). In vivo studies also showed that the tumor growth inhibitory effect of [211At]NaAt depended on NIS expression and was more than six times that of [131I]NaI per Bq.


Assuntos
Compostos de Iodo , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Simportadores/genética , Simportadores/metabolismo , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
19.
Molecules ; 27(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35566385

RESUMO

Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Plantas , Podofilotoxina/química , Relação Estrutura-Atividade
20.
Cancer Sci ; 112(3): 1132-1140, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33277750

RESUMO

α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.


Assuntos
Partículas alfa/uso terapêutico , Astato/administração & dosagem , Portadores de Fármacos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/radioterapia , alfa-Metiltirosina/farmacologia , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA