Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950903

RESUMO

In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.

2.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438262

RESUMO

Layer 4 of the rodent somatosensory cortex has unitary structures called barrels that receive tactile information from individual vibrissae. Barrels in the anterolateral barrel subfield (ALBSF) are much smaller and have gained less attention than larger barrels in the posteromedial barrel subfield (PMBSF), though the former outnumber the latter. We compared the morphological features of barrels between the ALBSF and PMBSF in male mice using deformation-free tangential sections and confocal optical slice-based, precise reconstructions of barrels. The average volume of a single barrel in the ALBSF was 34.7% of that in the PMBSF, but the numerical density of parvalbumin (PV)-positive interneurons in the former was 1.49 times higher than that in the latter. Moreover, PV neuron density in septa was 2.08 times higher in the ALBSF than that in the PMBSF. The proportions of PV neuron number to both all neuron number and all GABAergic neuron number in the ALBSF were also higher than those in the PMBSF. Somata of PV neurons in barrels and septa in the ALBSF received 1.64 and 1.50 times more vesicular glutamate transporter Type 2-labeled boutons than those in the PMBSF, suggesting more potent feedforward inhibitory circuits in the ALBSF. The mode of connectivity through dendritic gap junctions among PV neurons also differed between the ALBSF and PMBSF. Clusters of smaller unitary structures containing a higher density of representative GABAergic interneurons with differential morphological features in the ALBSF suggest a division of functional roles in the two vibrissa-barrel systems, as has been demonstrated by behavioral studies.


Assuntos
Interneurônios , Parvalbuminas , Camundongos , Animais , Masculino , Córtex Somatossensorial/fisiologia , Vibrissas , Neurônios GABAérgicos , Contagem de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA