Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(38): 20068-84, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27466367

RESUMO

Violacein is a natural purple pigment of Chromobacterium violaceum with potential medical applications as antimicrobial, antiviral, and anticancer drugs. The initial step of violacein biosynthesis is the oxidative conversion of l-tryptophan into the corresponding α-imine catalyzed by the flavoenzyme l-tryptophan oxidase (VioA). A substrate-related (3-(1H-indol-3-yl)-2-methylpropanoic acid) and a product-related (2-(1H-indol-3-ylmethyl)prop-2-enoic acid) competitive VioA inhibitor was synthesized for subsequent kinetic and x-ray crystallographic investigations. Structures of the binary VioA·FADH2 and of the ternary VioA·FADH2·2-(1H-indol-3-ylmethyl)prop-2-enoic acid complex were resolved. VioA forms a "loosely associated" homodimer as indicated by small-angle x-ray scattering experiments. VioA belongs to the glutathione reductase family 2 of FAD-dependent oxidoreductases according to the structurally conserved cofactor binding domain. The substrate-binding domain of VioA is mainly responsible for the specific recognition of l-tryptophan. Other canonical amino acids were efficiently discriminated with a minor conversion of l-phenylalanine. Furthermore, 7-aza-tryptophan, 1-methyl-tryptophan, 5-methyl-tryptophan, and 5-fluoro-tryptophan were efficient substrates of VioA. The ternary product-related VioA structure indicated involvement of protein domain movement during enzyme catalysis. Extensive structure-based mutagenesis in combination with enzyme kinetics (using l-tryptophan and substrate analogs) identified Arg(64), Lys(269), and Tyr(309) as key catalytic residues of VioA. An increased enzyme activity of protein variant H163A in the presence of l-phenylalanine indicated a functional role of His(163) in substrate binding. The combined structural and mutational analyses lead to the detailed understanding of VioA substrate recognition. Related strategies for the in vivo synthesis of novel violacein derivatives are discussed.


Assuntos
Proteínas de Bactérias , Chromobacterium , Indóis/metabolismo , Triptofano Oxigenase , Triptofano , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chromobacterium/química , Chromobacterium/genética , Chromobacterium/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Domínios Proteicos , Relação Estrutura-Atividade , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Triptofano Oxigenase/química , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
2.
Nat Biotechnol ; 21(4): 414-21, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12612588

RESUMO

Delivery of protein therapeutics often requires frequent injections because of low activity or rapid clearance, thereby placing a burden on patients and caregivers. Using glycoengineering, we have increased and prolonged the activity of proteins, thus allowing reduced frequency of administration. Glycosylation analogs with new N-linked glycosylation consensus sequences introduced into the protein were screened for the presence of additional N-linked carbohydrates and retention of in vitro activity. Suitable consensus sequences were combined in one molecule, resulting in glycosylation analogs of rHuEPO, leptin, and Mpl ligand. All three molecules had substantially increased in vivo activity and prolonged duration of action. Because these proteins were of three different classes (rHuEPO is an N-linked glycoprotein, Mpl ligand an O-linked glycoprotein, and leptin contains no carbohydrate), glycoengineering may be generally applicable as a strategy for increasing the in vivo activity and duration of action of proteins. This strategy has been validated clinically for glycoengineered rHuEPO (darbopoetin alfa).


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glicoproteínas/biossíntese , Glicoproteínas/genética , Engenharia de Proteínas/métodos , Proteínas/uso terapêutico , Anemia/tratamento farmacológico , Animais , Células CHO/metabolismo , Células COS/metabolismo , Cricetinae , Eritropoetina/genética , Eritropoetina/metabolismo , Eritropoetina/uso terapêutico , Excipientes/química , Feminino , Melhoramento Genético/métodos , Glicoproteínas/metabolismo , Humanos , Leptina/biossíntese , Leptina/deficiência , Leptina/genética , Leptina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Proteínas/administração & dosagem , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Trombopoetina/biossíntese , Trombopoetina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA