Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 191: 106404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184014

RESUMO

Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Osteoporose , Idoso , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Transcriptoma , Microglia , Osteoporose/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular
2.
J Med Virol ; 95(9): e29067, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37675796

RESUMO

The COVID-19 pandemic had a profound impact on global health, but rapid vaccine administration resulted in a significant decline in morbidity and mortality rates worldwide. In this study, we sought to explore the temporal changes in the humoral immune response against SARS-CoV-2 healthcare workers (HCWs) in Augusta, GA, USA, and investigate any potential associations with ethno-demographic features. Specifically, we aimed to compare the naturally infected individuals with naïve individuals to understand the immune response dynamics after SARS-CoV-2 vaccination. A total of 290 HCWs were included and assessed prospectively in this study. COVID status was determined using a saliva-based COVID assay. Neutralizing antibody (NAb) levels were quantified using a chemiluminescent immunoassay system, and IgG levels were measured using an enzyme-linked immunosorbent assay method. We examined the changes in antibody levels among participants using different statistical tests including logistic regression and multiple correspondence analysis. Our findings revealed a significant decline in NAb and IgG levels at 8-12 months postvaccination. Furthermore, a multivariable analysis indicated that this decline was more pronounced in White HCWs (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.07-4.08, p = 0.02) and IgG (OR = 2.07, 95% CI = 1.04-4.11, p = 0.03) among the whole cohort. Booster doses significantly increased IgG and NAb levels, while a decline in antibody levels was observed in participants without booster doses at 12 months postvaccination. Our results highlight the importance of understanding the dynamics of immune response and the potential influence of demographic factors on waning immunity to SARS-CoV-2. In addition, our findings emphasize the value of booster doses to ensure durable immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Anticorpos Neutralizantes , Pessoal de Saúde , Imunoglobulina G
3.
Physiol Genomics ; 54(8): 296-304, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759450

RESUMO

Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1ß is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1ß secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1ß KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1ß deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1ß KO. These data suggest that disuse-related activation of IL-1ß can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.


Assuntos
Vesículas Extracelulares , Interleucina-1beta/metabolismo , MicroRNAs , Transtornos Musculares Atróficos , Animais , Vesículas Extracelulares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/metabolismo
4.
Biogerontology ; 23(6): 681-698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35727468

RESUMO

Over the past decade, extensive efforts have focused on understanding age-associated diseases and how to prolong a healthy lifespan. The induction of dietary protocols such as caloric restriction (CR) and protein restriction (PR) has positively affected a healthy lifespan. These intervention ideas (nutritional protocols) have been the subject of human cohort studies and clinical trials to evaluate their effectiveness in alleviating age-related diseases (such as type II diabetes, cardiovascular disease, obesity, and musculoskeletal fragility) and promoting human longevity. This study summarizes the literature on the nutritional protocols, emphasizing their impacts on bone and muscle biology. In addition, we analyzed several CR studies using Gene Expression Omnibus (GEO) database and identified common transcriptome changes to understand the signaling pathway involved in musculoskeletal tissue. We identified nine novel common genes, out of which five were upregulated (Emc3, Fam134b, Fbxo30, Pip5k1a, and Retsat), and four were downregulated (Gstm2, Per2, Fam78a, and Sel1l3) with CR in muscles. Gene Ontology enrichment analysis revealed that CR regulates several signaling pathways (e.g., circadian gene regulation and rhythm, energy reserve metabolic process, thermogenesis) involved in energy metabolism. In conclusion, this study summarizes the beneficiary role of CR and identifies novel genes and signaling pathways involved in musculoskeletal biology.


Assuntos
Diabetes Mellitus Tipo 2 , Envelhecimento Saudável , Humanos , Envelhecimento/fisiologia , Longevidade/genética , Restrição Calórica
5.
Biogerontology ; 23(5): 629-640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36056226

RESUMO

Understanding the pathophysiology behind age-related diseases is an urgent need as the elderly population continues to grow. With age, there is a high risk of musculoskeletal deterioration and associated morbidity and mortality. Although the exact mechanism behind age-related degeneration is unknown, it is well established that alteration in cellular metabolism is one of the important contributing factors. Alteration in signaling pathways with age leads to the accumulation or depletion of several metabolites that play a vital role in musculoskeletal pathophysiology. This study aimed to identify age-related changes in bone tissue metabolites in C57BL/6 mice. We then correlated the differentially expressed metabolites with their functions in bone biology. In both aged males and females, hydroxyproline, glutamine, and alpha-linolenic acid levels were decreased. In aged females, Ornithine (p value = 0.001), L-Proline (p value = 0.008), Uridine (p value = 0.001), Aspartic Acid (p value = 0.004) levels were significantly decreased, and glutamate (p value = 0.002) was elevated. In aged males, N-acetyl-D-glucosamine (pvalue = 0.010), Adrenic acid (pvalue = 0.0099), Arachidonic acid (p value = 0.029) and Allantoin (p value = 0.004) levels were decreased. Metabolic pathway analysis revealed that purine and D-glutamine and D-glutamate metabolism were significantly altered in both sexes, while arginine biosynthesis in females and lipid metabolism in males were highly affected. These differences in metabolic signaling might be one of the reasons for the discrepancy in musculoskeletal disease manifestation between the two sexes. Understanding the role of these metabolites play in the aging bone will allow for new sex-specific targeted therapies against the progression of musculoskeletal diseases.


Assuntos
Envelhecimento , Metabolismo dos Lipídeos , Idoso , Envelhecimento/metabolismo , Animais , Osso e Ossos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ornitina/metabolismo
6.
Mediators Inflamm ; 2021: 2911578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621138

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Assuntos
Doenças Ósseas/etiologia , COVID-19/complicações , Cinurenina/metabolismo , Doenças Musculares/etiologia , SARS-CoV-2 , Triptofano/metabolismo , Animais , Humanos , Receptores de Hidrocarboneto Arílico/fisiologia , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066870

RESUMO

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.


Assuntos
Envelhecimento/patologia , Dieta , Microbioma Gastrointestinal , Inflamação/patologia , Triptofano/deficiência , Envelhecimento/sangue , Animais , Bactérias/classificação , Biodiversidade , Citocinas/sangue , Fezes/microbiologia , Inflamação/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia
8.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114603

RESUMO

There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cinurenina/farmacologia , Osteogênese , Ligante RANK/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células RAW 264.7 , Receptores de Hidrocarboneto Arílico/genética , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cytokine ; 123: 154783, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336263

RESUMO

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.


Assuntos
Osso e Ossos/metabolismo , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Músculos/metabolismo , Transdução de Sinais , Osso e Ossos/patologia , Humanos , Músculos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Receptores CXCR4/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
10.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387239

RESUMO

Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Terapia Combinada , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC
11.
J Immunol ; 197(3): 747-60, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27354217

RESUMO

The AMP-activated protein kinase, AMPK, is an energy-sensing, metabolic switch implicated in various metabolic disorders; however, its role in inflammation is not well defined. We have previously shown that loss of AMPK exacerbates experimental autoimmune encephalomyelitis (EAE) disease severity. In this study, we investigated the mechanism through which AMPK modulates inflammatory disease like EAE. AMPKα1 knockout (α1KO) mice with EAE showed severe demyelination and inflammation in the brain and spinal cord compared with wild-type due to higher expression of proinflammatory Th17 cytokines, including IL-17, IL-23, and IL-1ß, impaired blood-brain barrier integrity, and increased infiltration of inflammatory cells in the CNS. Infiltrated CD4 cells in the brains and spinal cords of α1KO with EAE were significantly higher compared with wild-type EAE and were characterized as IL-17 (IL-17 and GM-CSF double-positive) CD4 cells. Increased inflammatory response in α1KO mice was due to polarization of macrophages (Mϕ) to proinflammatory M1 type phenotype (IL-10(low)IL-23/IL-1ß/IL-6(high)), and these M1 Mϕ showed stronger capacity to induce allogenic as well as Ag-specific (myelin oligodendrocyte glycoprotein [MOG]35-55) T cell response. Mϕ from α1KO mice also enhanced the encephalitogenic property of MOG35-55-primed CD4 T cells in B6 mice. The increased encephalitogenic MOG-restricted CD4(+) T cells were due to an autocrine effect of IL-1ß/IL-23-mediated induction of IL-6 production in α1KO Mϕ, which in turn induce IL-17 and GM-CSF production in CD4 cells. Collectively, our data indicate that AMPK controls the inflammatory disease by regulating the M1 phenotype-Th17 axis in an animal model of multiple sclerosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Interleucina-17/imunologia , Macrófagos/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Células Th17/imunologia
12.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158456

RESUMO

Recent evidence suggests that myeloid cells are critical in cancer development and therapy resistance processes. Pharmacological targeting of tumor-associated myeloid cells is an emerging approach among upcoming immune therapies. Surprisingly, myeloid cells are heterogeneous, including a subset of the myeloid cell displaying angiogenic properties in solid tumors. There is an urgent need to delineate angiogenic myeloid cell populations in order to facilitate specific targeting of protumor myeloid cells among heterogeneous pool. This review article is intended to compile all the relevant information in the literature for improved understanding of angiogenic myeloid cells and their role in tumor refractoriness to cancer therapy.


Assuntos
Células Mieloides/citologia , Células Mieloides/fisiologia , Neoplasias/radioterapia , Neoplasias/terapia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Humanos , Imunoterapia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207475

RESUMO

Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs) particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2) mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor ß-1 (TGFß-1). In addition, transforming growth factor ß-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFß-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFß-1 expression.


Assuntos
Adipócitos/citologia , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , MicroRNAs/genética , Osteogênese , Diferenciação Celular , Humanos , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Gordura Subcutânea/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
BMC Musculoskelet Disord ; 15: 9, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24401033

RESUMO

BACKGROUND: Nutrient levels are known to influence the development of osteoarthritis (OA), presumably by modulating levels of matrix biosynthesis and degradation. These processes may be affected by ascorbic acid (AA), an antioxidant which acts as a cofactor for numerous biochemical reactions and is essential for post-translational modifications of collagen. In this study we examined the expression of SVCT2, the only known Sodium coupled vitamin C transporter isoform present in articular cartilage, in human articular cartilage explants derived from both normal and osteoarthritis articular cartilage. METHODS: OA1 and OA3 human articular cartilage was carefully dissected and macroscopically graded for degeneration via the Collins scale. The tissue samples were histologically examined by Hematoxylin and Eosin and Safranin O and Fast Green staining. SVCT2 expression analysis was performed at mRNA level by quantitative real time PCR and at a protein level by immunohistochemistry. RESULTS: Our quantitative real time PCR showed marked variation in the expression of SVCT2 in human osteoarthritic articular cartilage. SVCT2 expression was significantly down-regulated (p = 0.0001) in the Collins grade 3 (OA3) compared to Collins grade 1 (OA1) tissue. Furthermore, slides stained with fluorescent antibodies to SVCT2 demonstrated greatly reduced fluorescence for the SVCT2 transporter on the chondrocyte plasma membrane in the osteoarthritic tissue samples. CONCLUSIONS: These findings demonstrate that the expression of SVCT2 transporter is significantly altered in human osteoarthritic tissues (OA3). The modulation of this transporter could therefore potentially influence the prevention, management and treatment of osteoarthritis.


Assuntos
Cartilagem Articular/química , Condrócitos/química , Osteoartrite do Joelho/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/análise , Idoso , Cartilagem Articular/patologia , Condrócitos/patologia , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Transportadores de Sódio Acoplados à Vitamina C/genética
15.
Int J Tryptophan Res ; 17: 11786469241246674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757095

RESUMO

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.

16.
Exp Neurol ; : 114867, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914274

RESUMO

An ischemic stroke (IS) is caused due to the lack of blood flow to cerebral tissue. Most of the studies have focused on how stroke affects the localized tissue, but it has been observed that a stroke can cause secondary complications in distant organs, such as Bone Marrow (BM). Our study focused on the effect of ischemic strokes on the bone marrow microenvironment. Bone marrow (BM) is a vital organ that maintains inflammatory homeostasis and aids in the repair of damaged tissue after injury/IS. We used the middle cerebral artery occlusion (MCAO) model of ischemic stroke on adult mice (6 months) and investigated the changes in the BM environment. BM cells were used for western blot and RT-PCR, and the BM supernatant was used for cytokine analysis and extracellular vesicle (EVs) isolation. We observed a significant increase in the total cell number within the BM and an increase in TNF-alpha and MCP-1, which are known for inducing a pro-inflammatory environment. Western blots analysis on the whole BM cell lysate demonstrated elevated levels of inflammatory factors (IL-6, TNF-alpha, and TLR-4) and senescence markers (p21 p16). EVs isolated from the BM supernatant showed no change in size or concentration; however, we found that the EVs carried increased miRNA-141-3p and miRNA-34a. Proteomic analysis on BM-derived EVs showed an alteration in the protein cargo of IS. We observed an increase in FgB, C3, Fn1, and Tra2b levels. The signaling pathway analysis showed mitochondrial function is most affected within the bone marrow. Our study demonstrated that IS induces changes in the BM environment and EVs secreted in the BM.

17.
Biochem Biophys Res Commun ; 436(3): 355-61, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23685153

RESUMO

The early activation of microglia that induces retinal inflammation in DR may serve as a target for therapeutic intervention of DR. Our demonstration that retinal inflammation is attenuated via adenosine receptor A(2A)AR supports the hypothesis that a mechanism to maintain extracellular concentrations of adenosine important in normal physiology is impaired in DR. Extracellular concentrations of adenosine are regulated by the interplay of equiliberative nucleoside transporter (ENT)s with enzymes of adenosine metabolism including adenosine deaminase-1 (ADA1), adenosine kinase (AK) and CD73. In the vertebrates but not rodents, a macrophage-associated ADA2 is identified. The role of ADA2 is, therefore, understudied as the sequencing probes or antibodies to mouse ADA2 are not available. We identified increased ADA2 expression and activity in human and porcine retinas with diabetes, and in Amadori glycated albumin (AGA)- or hyperglycemia-treated porcine and human microglia. In rodent as well as porcine cells, modulation of TNF-α release is mediated by A(2A)AR. Quantitative analysis of normal and diabetic porcine retinas reveals that while the expression levels of ADA2, A2AAR, ENT1, TNF-α and MMP9 are increased, the levels of AK are reduced during inflammation as an endogenous protective mechanism. To determine the role of ADA2, we found that AGA induces ADA2 expression, ADA2 activity and TNF-α release, and that TNF-α release is blocked by ADA2-neutralizing antibody or ADA2 siRNA, but not by scrambled siRNA. These results suggest that retinal inflammation in DR is mediated by ADA2, and that the anti-inflammatory activity of A(2A)AR signaling is impaired in diabetes due to increased ADA2 activity.


Assuntos
Adenosina Desaminase/metabolismo , Retinopatia Diabética/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Retina/enzimologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/genética , Animais , Hipóxia Celular , Retinopatia Diabética/enzimologia , Ativação Enzimática , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Produtos Finais de Glicação Avançada , Humanos , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Microglia/efeitos dos fármacos , Microglia/enzimologia , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Purinérgicos P1/metabolismo , Retina/patologia , Albumina Sérica/farmacologia , Transdução de Sinais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Albumina Sérica Glicada
18.
Exp Mol Pathol ; 95(3): 298-306, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23999113

RESUMO

A number of studies have revealed that Type I diabetes (T1D) is associated with bone loss and an increased risk of fractures. T1D induces oxidative stress in various tissues and organs. Vitamin C plays an important role in the attenuation of oxidative stress; however, little is known about the effect of T1D induced oxidative stress on the regulation of vitamin C transporter in bone and bone marrow cells. To investigate this, T1D was induced in mice by multiple low dose injections of streptozotocin. We have demonstrated that endogenous antioxidants, glutathione peroxidase (GPx) and superoxide dismutase (SOD) are down-regulated in the bone and bone marrow of T1D. The vitamin C transporter isoform SVCT2, the only known transporter expressed in bone and bone marrow stromal cells (BMSCs), is negatively regulated in the bone and bone marrow of T1D. The µCT imaging of the bone showed significantly lower bone quality in the 8 week T1D mouse. The in-vitro study in BMSCS showed that the knockdown of SVCT2 transporter decreases ascorbic acid (AA) uptake, and increases oxidative stress. The significant reversing effect of antioxidant vitamin C is only possible in control cells, not in knockdown cells. This study suggested that T1D induces oxidative stress and decreases SVCT2 expression in the bone and bone marrow environment. Furthermore, this study confirms that T1D increases bone resorption, decreases bone formation and changes the microstructure of bones. This study has provided evidence that the regulation of the SVCT2 transporter plays an important role not only in T1D osteoporosis but also in other oxidative stress-related musculoskeletal complications.


Assuntos
Medula Óssea/patologia , Osso e Ossos/patologia , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Estresse Oxidativo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Animais , Western Blotting , Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportadores de Sódio Acoplados à Vitamina C/antagonistas & inibidores , Transportadores de Sódio Acoplados à Vitamina C/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(29): 12992-7, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615953

RESUMO

Retrotransposons including endogenous retroviruses and their solitary long terminal repeats (LTRs) compose >40% of the human genome. Many of them are located in intergenic regions far from genes. Whether these intergenic retrotransposons serve beneficial host functions is not known. Here we show that an LTR retrotransposon of ERV-9 human endogenous retrovirus located 40-70 kb upstream of the human fetal gamma- and adult beta-globin genes serves a long-range, host function. The ERV-9 LTR contains multiple CCAAT and GATA motifs and competitively recruits a high concentration of NF-Y and GATA-2 present in low abundance in adult erythroid cells to assemble an LTR/RNA polymerase II complex. The LTR complex transcribes intergenic RNAs unidirectionally through the intervening DNA to loop with and modulate transcription factor occupancies at the far downstream globin promoters, thereby modulating globin gene switching by a competitive mechanism.


Assuntos
DNA Intergênico/genética , Retroelementos/genética , Animais , Pareamento de Bases/genética , Sequência de Bases , Fator de Ligação a CCAAT/metabolismo , Células Precursoras Eritroides/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Genes de Troca , Loci Gênicos/genética , Globinas/genética , Humanos , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , RNA Polimerase II/metabolismo , Recombinação Genética/genética , Deleção de Sequência/genética , Sequências Repetidas Terminais/genética
20.
Exp Gerontol ; 183: 112319, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37898179

RESUMO

The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.


Assuntos
Melatonina , Microbiota , Triptofano/metabolismo , Cinurenina/metabolismo , Indóis , Melatonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA