Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612503

RESUMO

Chronic myeloid leukemia (CML) is induced by the expression of the fused tyrosine kinase BCR-ABL, which is caused by a chromosomal translocation. BCR-ABL inhibitors have been used to treat CML; however, the acquisition of resistance by CML cells during treatment is a serious issue. We herein demonstrated that BCR-ABL induced the expression of the RNA helicase DDX5 in K562 cells derived from CML patients in a manner that was dependent on its kinase activity, which resulted in cell proliferation and survival. The knockout of DDX5 decreased the expression of BIRC5 (survivin) and activated caspase 3, leading to apoptosis in K562 cells. Similar results were obtained in cells treated with FL118, an inhibitor of DDX5 and a derivative compound of camptothecin (CPT). Furthermore, FL118 potently induced apoptosis not only in Ba/F3 cells expressing BCR-ABL, but also in those expressing the BCR-ABL T315I mutant, which is resistant to BCR-ABL inhibitors. Collectively, these results revealed that DDX5 is a critical therapeutic target in CML and that FL118 is an effective candidate compound for the treatment of BCR-ABL inhibitor-resistant CML.


Assuntos
Indolizinas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Benzodioxóis , Inibidores de Proteínas Quinases/farmacologia
2.
Med Mol Morphol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980406

RESUMO

The prevalence of presbyopia and nuclear cataracts (NUC) is reported to be higher in tropical areas than that in other regions, suggesting a potential influence of high temperatures on lens health. Transient receptor potential vanilloid (TRPV) channels play a crucial role in detecting ambient temperatures across various species, with TRPV1 and TRPV4 expressed in lens epithelial cells. In this study, we investigated whether ambient temperatures affect TRPV1 and TRPV4 activity in the lens, potentially contributing to the development of presbyopia and NUC. We conducted experiments using cultured human lens epithelial cell lines under different temperature conditions. Our results revealed that the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and p38 pathways, downstream molecules of TRPV1, were activated, while Src family kinase, a downstream molecule of TRPV4, was inhibited at 37.5 °C culture compared to 35.0 °C. Confocal microscope images demonstrated higher expression of TRPV1 in 3D-structured cells under high-temperature culture conditions. Additionally, in organ culture lenses, higher elasticity was observed at elevated temperatures compared to that at lower temperatures. These results suggest that high ambient temperatures may induce lens sclerosis via TRPV1 activation, potentially contributing to the development of presbyopia and NUC.

3.
Exp Eye Res ; 237: 109719, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951336

RESUMO

Presbyopia is caused by age-related lenticular hardening, resulting in near vision loss, and it occurs in almost every individual aged ≥50 years. The lens experiences mechanical pressure during for focal adjustment to change its thickness. As lenticular stiffening results in incomplete thickness changes, near vision is reduced, which is known as presbyopia. Piezo1 is a mechanosensitive channel that constantly senses pressure changes during the regulation of visual acuity, and changes in Piezo1 channel activity may contribute to presbyopia. However, no studies have reported on Piezo1 activation or the onset of presbyopia. To elucidate the relevance of Piezo1 activation and cross-linking in the development of presbyopia, we analysed the function of Piezo1 in the lens. The addition of Yoda1, a Piezo1 activator, induced an increase in transglutaminase 2 (TGM2) mRNA expression and activity through the extra-cellular signal-regulated kinase (ERK) 1/2 and c-Jun-NH2-terminal kinase1/2 pathways. In ex vivo lenses, Yoda1 treatment induced γ-crystallin cross-linking via TMG2 activation. Furthermore, Yoda1 eye-drops in mice led to lenticular hardening via TGM2 induction and activation in vivo, suggesting that Yoda1-treated animals could serve as a model for presbyopia. Our findings indicate that this presbyopia-animal model could be useful for screening drugs for lens-stiffening inhibition.


Assuntos
Canais Iônicos , Presbiopia , Camundongos , Animais , Canais Iônicos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Esclerose , Transporte Biológico
4.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203488

RESUMO

According to numerous studies, it has been epidemiologically suggested that habitual coffee intake seems to prevent the onset of neurodegenerative diseases. In this study, we hypothesized that coffee consumption suppresses neuroinflammation, which is closely related to the development of neurodegenerative diseases. Using microglial BV-2 cells, we first found that the inflammatory responses induced by lipopolysaccharide (LPS) stimulation was diminished by both coffee and decaffeinated coffee through the inhibition of an inflammation-related transcription factor, nuclear factor-κB (NF-κB). Pyrocatechol, a component of roasted coffee produced by the thermal decomposition of chlorogenic acid, also exhibited anti-inflammatory activity by inhibiting the LPS-induced activation of NF-κB. Finally, in an inflammation model using mice injected with LPS into the cerebrum, we observed that intake of pyrocatechol as well as coffee decoctions drastically suppressed the accumulation of microglia and the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNFα), CCL2, and CXCL1 in the inflammatory brain. These observations strongly encourage us to hypothesize that the anti-inflammatory activity of pyrocatechol as well as coffee decoction would be useful for the suppression of neurodegeneration and the prevention of the onsets of Alzheimer's (AD) and Perkinson's diseases (PD).


Assuntos
NF-kappa B , Doenças Neurodegenerativas , Animais , Camundongos , Doenças Neuroinflamatórias , Café , Microglia , Lipopolissacarídeos/toxicidade , Inflamação/tratamento farmacológico , Catecóis/farmacologia , Anti-Inflamatórios/farmacologia
5.
Med Mol Morphol ; 56(4): 274-287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493821

RESUMO

Regulation of ion and water microcirculation within the lens is tightly controlled through aquaporin channels and connexin junctions. However, cataracts can occur when the lens becomes cloudy. Various factors can induce cataracts, including diabetes which is a well-known cause. The most common phenotype of diabetic cataracts is a cortical and/or posterior subcapsular opacity. In addition to the three main types and two subtypes of cataracts, a vacuole formation is frequently observed; however, their origin remains unclear. In this study, we focused on the aquaporins and connexins involved in diabetes-induced cataracts and vacuoles in Nile grass type II diabetes. The results showed that the expression of aquaporin 0 and aquaporin 5 increased, and that of connexin 43 decreased in diabetic rat lenses. Additionally, aquaporin 0 and 5 were strongly localized in peripheral of vacuoles, suggesting that aquaporins are involved in vacuoles formation. Transillumination photography revealed large vacuoles at the tip of the Y-suture in the anterior capsule of the diabetic lens, and several small vacuoles were observed in the posterior capsule. Within the vacuoles, cytoplasmic degradation and aggregation of fibrous material were observed. Our findings suggest that aquaporins are potential candidate proteins for preventing vacuole formation.


Assuntos
Aquaporinas , Catarata , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Vacúolos/metabolismo , Conexinas/genética , Conexinas/metabolismo , Aquaporinas/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054935

RESUMO

In the treatment of breakpoint cluster region-Abelson (BCR-ABL)-positive chronic myeloid leukemia (CML) using BCR-ABL inhibitors, the appearance of a gatekeeper mutation (T315I) in BCR-ABL is a serious issue. Therefore, the development of novel drugs that overcome acquired resistance to BCR-ABL inhibitors by CML cells is required. We previously demonstrated that a bis-pyridinium fullerene derivative (BPF) induced apoptosis in human chronic myeloid leukemia (CML)-derived K562 cells partially through the generation of reactive oxygen species (ROS). We herein show that BPF enhanced the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase (MEK-ERK) pathway in a ROS-independent manner. BPF-induced apoptosis was attenuated by trametinib, suggesting the functional involvement of the MEK-ERK pathway in apoptosis in K562 cells. In addition, the constitutive activation of the MEK-ERK pathway by the enforced expression of the BRAFV600E mutant significantly increased the sensitivity of K562 cells to BPF. These results confirmed for the first time that BPF induces apoptosis in K562 cells through dual pathways-ROS production and the activation of the MEK-ERK pathway. Furthermore, BPF induced cell death in transformed Ba/F3 cells expressing not only BCR-ABL but also T315I mutant through the activation of the MEK-ERK pathway. These results indicate that BPF is as an effective CML drug that overcomes resistance to BCR-ABL inhibitors.


Assuntos
Apoptose/efeitos dos fármacos , Fulerenos/farmacologia , Proteínas de Fusão bcr-abl/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Fulerenos/química , Genes Essenciais , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Modelos Biológicos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
7.
Exp Eye Res ; 213: 108840, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798144

RESUMO

Posterior capsule opacification (PCO), the most common complication of cataract surgery occurring in 20-50% of patients after 2-5 years of cataract surgery, is a major problem in the aging society. The epithelial-mesenchymal transition (EMT) of lens epithelial cells after cataract surgery has been proposed as a major cause of PCO. Capsaicin, widely used as a food additive and analgesic agent, is a major pungent ingredient in red pepper. Although the effect of capsaicin on EMT has been reported in cancer cells, the biological reaction of capsaicin was unique in each cell type, and there have been no reports describing its effects on EMT earlier. In this study, we demonstrated that treatment with capsaicin inhibited TGFß2-induced EMT in vitro lens epithelial cells and ex vivo explant lens epithelial cells. Furthermore, eye drops of capsaicin inhibited the PCO model mice in vivo. Finally, we showed that capsaicin inhibited non-canonically induced Smad2/3 activation via suppression of EGFR activation and ERK phosphorylation. Our findings indicate that capsaicin and its derivatives are good candidate compounds for preventing PCO after cataract surgery.


Assuntos
Capsaicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/citologia , Fármacos do Sistema Sensorial/farmacologia , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Cicatrização/efeitos dos fármacos
8.
Cytokine ; 123: 154753, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31255914

RESUMO

In the majority of myeloproliferative neoplasms (MPNs) patients, a point mutation, V617F has been found in Janus kinase 2 (JAK2) gene, and this JAK2 mutant provoked aberrant signaling pathway. In the current study, we found that suppressor of cytokine signaling proteins 3 (SOCS3) possessed the tumor suppressive activity against the JAK2 V617F mutant-provoked cellular transformation. The knockdown of SOCS3 increased the expression level of the JAK2 V617F mutant, which enhanced the activation of signaling mediators, including signal transducer and activator of transcription 3 and 5 (STAT3, STAT5) and extracellular signal-regulated kinase (ERK), and also increased of the proliferation rate and tumorigenesis activity of Ba/F3 cells expressing the JAK2 V617F mutant and erythropoietin receptor (EpoR). In contrast, the enforced expression of SOCS3 significantly inhibited the JAK2 V617F mutant-induced activation of downstream signaling molecules, cell proliferation, and tumorigenesis by down-regulating the expression level of the JAK2 V617F mutant. SOCS3 interacted with the JAK2V617F mutant through its SH2 domain and was phosphorylated at Tyr-204 and Tyr-221 in its SOCS box by the JAK2V617F mutant. SOCS3 mutants carrying a mutation in the SH2 domain (R71E) and a substitution at Tyr-221 (Y221F) failed to exert inhibitory effects on JAK2V617F mutant-induced cellular transformation and tumorigenesis. Collectively, these results imply that SOCS3 plays a negative role in the JAK2 V617F mutant-induced oncogenic signaling pathway through its SH2 domain and the phosphorylation of Tyr-221 in its SOCS box.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Hematológicas/metabolismo , Janus Quinase 2/metabolismo , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Janus Quinase 2/genética , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Fosforilação/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética
9.
J Immunol ; 199(10): 3614-3622, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021376

RESUMO

The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a molecular platform that induces caspase-1 activation and subsequent IL-1ß maturation, and is implicated in inflammatory diseases; however, little is known about the negative regulation of NLRP3 inflammasome activation. In this article, we identified an E3 ligase, Ariadne homolog 2 (ARIH2), as a posttranslational negative regulator of NLRP3 inflammasome activity in macrophages. ARIH2 interacted with NLRP3 via its NACHT domain (aa 220-575) in the NLRP3 inflammasome complex. In particular, we found that while using mutants of ARIH2 and ubiquitin, the really interesting new gene 2 domain of ARIH2 was required for NLRP3 ubiquitination linked through K48 and K63. Deletion of endogenous ARIH2 using CRISPR/Cas9 genome editing inhibited NLRP3 ubiquitination and promoted NLRP3 inflammasome activation, resulting in apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization, pro-IL-1ß processing, and IL-1ß production. Conversely, ARIH2 overexpression promoted NLRP3 ubiquitination and inhibited NLRP3 inflammasome activation. Our findings reveal a novel mechanism of ubiquitination-dependent negative regulation of the NLRP3 inflammasome by ARIH2 and highlight ARIH2 as a potential therapeutic target for inflammatory diseases.


Assuntos
Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HEK293 , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Ligação Proteica , Engenharia de Proteínas , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Biosci Biotechnol Biochem ; 83(2): 185-191, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30319060

RESUMO

Fatty acid monoesters of hydroxytyrosol [2-(3,4-dihydroxyphenyl)ethanol] were synthesized in two steps from tyrosol (4-hydroxyphenylethanol) by successive Candida antarctica lipase B-catalyzed chemoselective acylation on the primary aliphatic hydroxy group over phenolic hydroxy group in tyrosol, and 2-iodoxybenzoic acid (IBX)-mediated hydroxylation adjacent to the remaining free phenolic hydroxy group. Examination of their suppression effects on nitric oxide production stimulated by lipopolysaccharides in RAW264.7 cells showed that hydroxytyrosol butyrate exhibited the highest inhibition (IC50 7.0 µM) among the tested compounds.


Assuntos
Ésteres/síntese química , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Álcool Feniletílico/análogos & derivados , Acilação , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ésteres/química , Ésteres/farmacologia , Hidroxilação , Concentração Inibidora 50 , Camundongos , Álcool Feniletílico/síntese química , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray
11.
J Biol Chem ; 292(5): 1826-1846, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27998978

RESUMO

The erythropoietin receptor (EpoR) regulates development of blood cells, and its full activation normally requires the cytokine erythropoietin (Epo). In the case of myeloproliferative neoplasms (MPN), Epo-independent signaling through EpoR can be caused by a point mutation, V617F, in the EpoR-interacting tyrosine kinase Janus kinase 2 (JAK2). In cells expressing the JAK2 V617F mutant, eight tyrosine residues in the intracellular domain of EpoR are phosphorylated, but the functional role of these phosphorylations in oncogenic signaling is incompletely understood. Here, to evaluate the functional consequences of the phosphorylation of these tyrosine residues, we constructed an EpoR-8YF mutant in which we substituted all eight tyrosine residues with phenylalanine. Co-expression of EpoR-8YF with the JAK2 V617F mutant failed to induce cytokine-independent cell proliferation and tumorigenesis, indicating that JAK2-mediated EpoR phosphorylation is the reason for JAK2 V617F mutant-induced oncogenic signaling. An exhaustive mutational analysis of the eight EpoR tyrosine residues indicated that three of these residues, Tyr-343, Tyr-460, and Tyr-464, are required for the JAK2 V617F mutant to exhibit its oncogenic activity. We also showed that phosphorylation at these three residues was necessary for full activation of the transcription factor STAT5, which is a critical downstream factor of JAK2 V617F-induced oncogenic signaling. In contrast, Epo stimulation could moderately stimulate the proliferation of cells expressing wild type JAK2 and EpoR-8YF, suggesting that the requirement of the phosphorylation of these three tyrosine residues seems to be specific for the oncogenic proliferation provoked by V617F mutation. Collectively, these results have revealed that phosphorylation of Tyr-343, Tyr-460, and Tyr-464 in EpoR underlies JAK2 V617F mutant-induced tumorigenesis. We propose that the targeted disruption of this pathway has therapeutic utility for managing MPN.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Hematológicas/metabolismo , Janus Quinase 2/metabolismo , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Humanos , Janus Quinase 2/genética , Camundongos , Transtornos Mieloproliferativos/genética , Proteínas de Neoplasias/genética , Fosforilação , Receptores da Eritropoetina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
12.
Nutr Neurosci ; 20(6): 336-342, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26788968

RESUMO

Recent evidence indicates that hypoxia-inducible vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects on neuronal and glial cells. On the other hand, recent epidemiological studies showed that daily coffee consumption has been associated with a lower risk of several neuronal disorders. Therefore, we investigated the effect of coffee on VEGF expression in human neuroblastoma SH-SY5Y cells. We found that even low concentration of coffee (<2%) strongly induced VEGF expression via an activation of HIF-1α. The activation of HIF-1α by coffee was attributed to the coffee-dependent inhibition of prolyl hydroxylation of HIF1α, which is essential for proteolytic degradation of HIF-1α. However, no inhibition was observed at the catalytic activity in vitro. Coffee component(s) responsible for the activation of HIF-1α was not major constituents such as caffeine, caffeic acid, chlorogenic acid, and trigonelline, but was found to emerge during roasting process. The active component(s) was extractable with ethyl acetate. Our results suggest that daily consumption of coffee may induce VEGF expression in neuronal cells. This might be related to protective effect of coffee on neural disorders such as Alzheimer's disease and Parkinson's disease.


Assuntos
Café/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Extratos Vegetais/metabolismo , Fator A de Crescimento do Endotélio Vascular/agonistas , Acetatos/química , Linhagem Celular Tumoral , Café/química , Manipulação de Alimentos , Alimento Funcional , Regulação Neoplásica da Expressão Gênica , Temperatura Alta , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroproteção , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Solventes/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Biochem Biophys Res Commun ; 462(3): 275-81, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25957474

RESUMO

Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics.


Assuntos
Chaperonina 60/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Mitocondriais/genética , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Células COS , Chaperonina 60/metabolismo , Chlorocebus aethiops , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
J Biol Chem ; 288(26): 19050-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23687302

RESUMO

Presynaptic nerve terminals must maintain stable neurotransmission via synaptic vesicle membrane recycling despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neuronal activity to vesicle trafficking is unknown. Here, we combined genetic knockdown and direct physiological measurements of synaptic transmission from paired neurons to show that three isoforms of dynamin, an essential endocytic protein, work individually to match vesicle reuse pathways, having distinct rate and time constants with physiological AP frequencies. Dynamin 3 resupplied the readily releasable pool with slow kinetics independently of the AP frequency but acted quickly, within 20 ms of the incoming AP. Under high-frequency firing, dynamin 1 regulated recycling to the readily releasable pool with fast kinetics in a slower time window of greater than 50 ms. Dynamin 2 displayed a hybrid response between the other isoforms. Collectively, our findings show how dynamin isoforms select appropriate vesicle reuse pathways associated with specific neuronal firing patterns.


Assuntos
Potenciais de Ação/fisiologia , Dinaminas/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Eletrofisiologia , Endocitose , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neurônios/fisiologia , Células PC12 , Terminações Pré-Sinápticas/fisiologia , Isoformas de Proteínas/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
15.
Biol Pharm Bull ; 37(11): 1820-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25212747

RESUMO

Recent epidemiological studies showed that coffee consumption is associated with a lower risk of type 2 diabetes, presumably due to suppression of excess fat accumulation in adipocytes. However, the mechanism underlying the effect of coffee on adipocyte differentiation has not been well documented. To elucidate the mechanism, we investigated the effect of coffee on the differentiation of mouse preadipocyte 3T3-L1 cells. Coffee reduced the accumulation of lipids during adipocytic differentiation of 3T3-L1 cells. At 5% coffee, the accumulation of lipids decreased to half that of the control. Coffee also inhibited the expression of the peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor controlling the differentiation of adipocytes. Furthermore, coffee reduced the expression of other differentiation marker genes, aP2, adiponectin, CCAAT-enhancer-binding protein α (C/EBPα), glucose transporter 4 (GLUT4), and lipoprotein lipase (LPL), during adipocyte differentiation. Major bioactive constituents in coffee extracts, such as caffeine, trigonelline, chlorogenic acid, and caffeic acid, showed no effect on PPARγ gene expression. The inhibitory activity was produced by the roasting of the coffee beans.


Assuntos
Adipócitos/efeitos dos fármacos , Coffea , PPAR gama/antagonistas & inibidores , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/genética , Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo
16.
Biol Pharm Bull ; 37(7): 1241-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24989015

RESUMO

Emerging evidence indicates that stress hormone glucocorticoids (GC) are an important modulator of brain development and function. To investigate whether GCs modulate neurosteroid biosynthesis in neural cells, we studied the effects of GCs on steroidogenic gene expression in human glioma GI-1 cells. The GC dexamethasone (Dex) reduced steroidogenic acute regulatory protein (StAR), CYP11A1 and 3ß-hydroxysteroid dehydrogenase gene expression in a dose- and GC receptor-dependent manner. In addition to its effects on steroidogenic gene expression, Dex also reduced de novo synthesis of progesterone (PROG). Furthermore, Dex inhibited all-trans retinoic acid (ATRA) and vitamin D3-induced steroidogenic gene expression and PROG production. This suggests that GC regulates steroidogenic gene expression in neural cells via cross-talk with the two fat-soluble vitamins, A and D. The relationship between the effects of GCs on neurosteroid biosynthesis and on cognitive behaviors and hippocampal neural activity is also discussed herein.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Complexos Multienzimáticos/genética , Neurotransmissores/antagonistas & inibidores , Fosfoproteínas/genética , Progesterona Redutase/genética , Esteroide Isomerases/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/enzimologia , Neuroglia/metabolismo , Neurotransmissores/biossíntese , Progesterona/antagonistas & inibidores , Progesterona/biossíntese , Receptores de Glucocorticoides/genética
17.
Cell Signal ; 114: 110985, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38000524

RESUMO

Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a fusion protein generated by a chromosomal translocation, is a causative gene product of anaplastic large cell lymphoma (ALCL). It induces cell proliferation and tumorigenesis by activating the transcription factor, signal transducer and activator of transcription factor 3 (STAT3). We herein demonstrated that STAT3 underwent acetylation at K685 in a manner that was dependent on the kinase activity of NPM-ALK. To investigate the role of STAT3 acetylation in NPM-ALK-induced oncogenesis, we generated Ba/F3 cells expressing NPM-ALK in which STAT3 was silenced by shRNA, named STAT3-KD cells, and then reconstituted wild-type STAT3 or the STAT3 K685R mutant into these cells. The phosphorylation level of the K685R mutant at Y705 and S727 was significantly higher than that of wild-type STAT3 in STAT3-KD cells. The expression of STAT3 target genes, such as IL-6, Pim1, Pim2, and Socs3, was more strongly induced by the reconstitution of the K685R mutant than wild-type STAT3. In addition, the proliferative ability of STAT3-KD cells reconstituted with the K685R mutant was slightly higher than that of STAT3-KD cells reconstituted with wild-type STAT3. In comparisons with the inoculation of STAT3-KD cells reconstituted with wild-type STAT3, the inoculation of STAT3-KD cells reconstituted with the K685R mutant significantly enhanced tumorigenesis and hepatosplenomegaly in nude mice. Collectively, these results revealed for the first time that the acetylation of STAT3 at K685 attenuated NPM-ALK-induced oncogenesis.


Assuntos
Proteínas de Fusão Oncogênica , Proteínas Tirosina Quinases , Fator de Transcrição STAT3 , Animais , Camundongos , Acetilação , Quinase do Linfoma Anaplásico/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Camundongos Nus , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Nucleofosmina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Humanos
18.
FEBS J ; 290(4): 988-1007, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36071319

RESUMO

The expression of CCAAT/enhancer-binding protein (C/EBP) family members and peroxisome proliferator-activated receptor γ (PPAR γ) is essential for the differentiation of pre-adipocyte 3T3-L1 cells into mature adipocytes induced by a combined stimulation with dexamethasone, 3-isobutyl-1-methylxanthine and insulin (DMI). We herein demonstrated that the RNA helicase DDX5, the expression of which was induced by DMI, played an important role in the adipocyte differentiation of 3T3-L1 cells. The DMI-induced accumulation of lipid droplets and expression of adipocyte markers in 3T3-L1 cells were significantly inhibited by the knockdown of DDX5. The knockdown of DDX5 interfered with the expressional induction of C/EBPδ, which was the first to be induced in the transcription factor cascade, and inhibited the subsequent expression of the other transcription factors, C/EBPß, PPARγ and C/EBPα. DDX5 interacted with the glucocorticoid receptor (GR), which induced the expression of C/EBPδ. The knockdown of DDX5 failed to induce the nuclear translocation of GR, suggesting the essential role of DDX5 in the early stage of adipocyte differentiation. Furthermore, the reconstitution of DDX5, but not the DDX5 mutant (K144N) lacking RNA helicase activity, restored DMI-induced GR activation and adipocyte differentiation in 3T3-L1 cells in which DDX5 was knocked down, confirming that the RNA helicase activity of DDX5 is essential for adipogenesis. Collectively, these results revealed for the first time that DDX5 is necessary for GR activation and plays an essential role in early adipocyte differentiation.


Assuntos
Adipócitos , Diferenciação Celular , RNA Helicases DEAD-box , Receptores de Glucocorticoides , Fatores de Transcrição , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , PPAR gama/genética , PPAR gama/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética
19.
Cell Signal ; 102: 110537, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442590

RESUMO

A point mutation (V617F) in the Janus kinase 2 (JAK2) gene results in the production of disorderly activated tyrosine kinase, which causes myeloproliferative neoplasms (MPN). We herein demonstrated that the RNA helicase DDX5 was highly expressed at the mRNA and protein levels through the activation of signal transducer and activator of transcription 5 (STAT5) in Ba/F3 cells expressing a JAK2V617F mutant and erythropoietin receptor (V617F/EpoR cells) and MPN patient-derived HEL cells. A treatment with the JAK1/2 inhibitor, ruxolitinib and STAT5 inhibitor, pimozide significantly inhibited DDX5 mRNA expression and enhanced the degradation of DDX5 in these cells, suggesting that the JAK2V617F mutant positively regulates DDX5 mRNA expression and DDX5 protein stability by activating STAT5. The knockdown of DDX5 specifically inhibited the activation of mechanistic target of rapamycin (mTOR) in V617F/EpoR cells and HEL cells and significantly suppressed the proliferation of these cells. Furthermore, the knockdown of DDX5 markedly suppressed tumorigenesis, splenomegaly, and liver hypertrophy caused by an inoculation of V617F/EpoR cells in nude mice. Collectively, these results revealed that JAK2V617F exhibits transforming activity by inducing the expression of DDX5 in a STAT5-dependent manner, indicating the potential of the JAK2V617F/STAT5/DDX5 axis as a therapeutic target in the treatment of MPN.


Assuntos
RNA Helicases DEAD-box , Transtornos Mieloproliferativos , Fator de Transcrição STAT5 , Animais , Camundongos , Carcinogênese , Transformação Celular Neoplásica/metabolismo , Janus Quinase 2/metabolismo , Camundongos Nus , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Receptores da Eritropoetina/metabolismo , RNA Mensageiro , Fator de Transcrição STAT5/metabolismo , RNA Helicases DEAD-box/metabolismo
20.
Neurochem Int ; 171: 105613, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774798

RESUMO

Nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) is one of the flavonoids found in shikuwasa, a popular citrus fruit in Okinawa, Japan. It exerts various pharmacological effects, such as anti-tumor, antioxidant, and anti-inflammatory activities. We herein investigated whether nobiletin attenuated lipopolysaccharide (LPS)-induced inflammatory responses in the murine microglial cell line BV-2 and neuroinflammation in mice induced by an intracerebral injection of LPS. In BV-2 cells, nobiletin significantly inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by preventing the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. Nobiletin also inhibited the LPS-induced mRNA expression of CCL2, CXCL1, IL-6, and TNFα. Nobiletin markedly attenuated the transcriptional activity of the NF-κB p65 subunit without affecting the degradation of IκBα or the nuclear localization of the NF-κB p65 subunit. Nobiletin also inhibited the LPS-induced activation of JNK, but not ERK or p38, in BV-2 cells. Furthermore, the administration of nobiletin significantly suppressed the accumulation of microglia and induction of the mRNA expression of CCL2, CXCL1, IL-6, and TNFα in the murine brain induced by injecting LPS into the striatum. Collectively, these results suggest the potential of nobiletin as a candidate anti-inflammatory drug for the prevention of neuroinflammation.


Assuntos
Citrus , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Flavonoides/farmacologia , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Citrus/genética , Citrus/metabolismo , Linhagem Celular , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Microglia/metabolismo , RNA Mensageiro/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA