Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(9): 3248-53, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401537

RESUMO

Much of the structural stability of the nucleus comes from meshworks of intermediate filament proteins known as lamins forming the inner layer of the nuclear envelope called the nuclear lamina. These lamin meshworks additionally play a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford Progeria Syndrome, and often include protruding structures termed nuclear blebs. These nuclear blebs are thought to be related to pathological gene expression; however, little is known about how and why blebs form. We have developed a minimal continuum elastic model of a lamin meshwork that we use to investigate which aspects of the meshwork could be responsible for bleb formation. Mammalian lamin meshworks consist of two types of lamin proteins, A type and B type, and it has been reported that nuclear blebs are enriched in A-type lamins. Our model treats each lamin type separately and thus, can assign them different properties. Nuclear blebs have been reported to be located in regions where the fibers in the lamin meshwork have a greater separation, and we find that this greater separation of fibers is an essential characteristic for generating nuclear blebs. The model produces structures with comparable morphologies and distributions of lamin types as real pathological nuclei. Thus, preventing this opening of the meshwork could be a route to prevent bleb formation, which could be used as a potential therapy for the pathologies associated with nuclear blebs.


Assuntos
Laminas/metabolismo , Modelos Biológicos , Lâmina Nuclear/metabolismo , Animais , Simulação por Computador , Células HeLa , Humanos , Masculino , Modelos Moleculares , Termodinâmica
2.
J Chem Phys ; 140(14): 144908, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24735319

RESUMO

Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.


Assuntos
Membrana Celular/química , Lipídeos/química , Fluidez de Membrana , Simulação por Computador , Elasticidade
3.
J Chem Phys ; 138(2): 024909, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320723

RESUMO

We investigate dynamical and stationary compositional and surface morphologies in macroscopically phase-separating multicomponent lipid bilayer membranes using a computational model. We employ a phase-field method for the description of the coexisting phases and treat the two leaflets individually while including interleaflet interactions. The compositional evolution of the two leaflets is coupled to the shape evolution of the membrane via a Helfrich free energy with a composition-dependent spontaneous curvature. We investigate the effects of the interleaflet interaction on the dynamics and stationary states of a system favoring nonzero spontaneous curvatures. Morphological phase diagrams are mapped in composition space using three different interleaflet coupling strengths. We find that characteristics sensitive to the coupling strength include the time required to develop regions of fully separated phases, the prevalence of a stripe morphology, and the shifting of phase compositions to accommodate energetically favorable interactions across leaflets. Characteristics found to be robust with respect to coupling strength include (1) the stripe morphology is favored at nearly equal mixtures and (2) phase separation is prevented in systems where a pair of phases that preferentially interact across leaflets together occupy nearly all or none of the membrane.


Assuntos
Bicamadas Lipídicas/química , Transição de Fase , Simulação por Computador , Modelos Químicos , Termodinâmica
4.
ASAIO J ; 65(4): 349-360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973403

RESUMO

Medical device manufacturers using computational modeling to support their device designs have traditionally been guided by internally developed modeling best practices. A lack of consensus on the evidentiary bar for model validation has hindered broader acceptance, particularly in regulatory areas. This has motivated the US Food and Drug Administration and the American Society of Mechanical Engineers (ASME), in partnership with medical device companies and software providers, to develop a structured approach for establishing the credibility of computational models for a specific use. Charged with this mission, the ASME V&V 40 Subcommittee on Verification and Validation (V&V) in Computational Modeling of Medical Devices developed a risk-informed credibility assessment framework; the main tenet of the framework is that the credibility requirements of a computational model should be commensurate with the risk associated with model use. This article provides an overview of the ASME V&V 40 standard and an example of the framework applied to a generic centrifugal blood pump, emphasizing how experimental evidence from in vitro testing can support computational modeling for device evaluation. Two different contexts of use for the same model are presented, which illustrate how model risk impacts the requirements on the V&V activities and outcomes.


Assuntos
Simulação por Computador/normas , Desenho de Equipamento/normas , Coração Auxiliar , Hemólise , Humanos , Estados Unidos , United States Food and Drug Administration
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011912, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17677499

RESUMO

We present a method for modeling phase transitions and morphological evolution of binary lipid membranes with approximately planar geometries. The local composition and the shape of the membrane are coupled through composition-dependent spontaneous curvature in a Helfrich free energy. The evolution of the composition field is described by a Cahn-Hilliard-type equation, while shape changes are described by relaxation dynamics. Our method explicitly treats the full nonlinear form of the geometrical scalars, tensors, and differential operators associated with the curved shape of the membrane. The model is applied to examine morphological evolution and stability of lipid membranes initialized in a variety of compositional and geometric configurations. Specifically, we investigate the dynamics of systems which have a lamellar structure as their lowest energy state. We find that evolution is very sensitive to initial conditions; only membranes with sufficiently large lamellar-type compositional perturbations or ripple-type shape perturbations in their initial configuration can deterministically evolve into a lamellar equilibrium morphology. We also observe that rigid topographical surface patterns have a strong effect on the phase separation and compositional evolution in these systems.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Conformação Molecular , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA