Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6629-6636, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37347123

RESUMO

The extraordinary mechanical properties of two-dimensional transition-metal dichalcogenides make them ideal candidates for investigating strain-induced control of various physical properties. Here we explore the role of nonuniform strain in modulating optical, electronic, and transport properties of semiconducting, chemical vapor deposited monolayer MoS2, on periodically nanostructured substrates. A combination of spatially resolved spectroscopic and electronic properties explore and quantify the differential strain distribution and carrier density on a monolayer, as it conformally drapes over the periodic nanostructures. The observed accumulation in electron density at the strained regions is supported by theoretical calculations which form the likely basis for the ensuing ×60 increase in field effect mobility in strained samples. Though spatially nonuniform, the pattern-induced strain is shown to be readily controlled by changing the periodicity of the nanostructures thus providing a robust yet useful macroscopic control on strain and mobility in these systems.

2.
Nanotechnology ; 32(17): 175202, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33429382

RESUMO

The allure of all-carbon electronics stems from the spread of its physical properties across all its allotropes. The scheme also harbours unique challenges, such as tunability of band gap, variability of doping and defect control. Here, we explore the technique of scanning probe tip-induced nanoscale reduction of graphene oxide (GO), which nucleates conducting, [Formula: see text] rich graphitic regions on the insulating GO background. The flexibility of direct writing is supplemented with control over the degree of reduction and tunability of band gap through macroscopic control parameters. The fabricated reduced GO channels and ensuing devices are investigated via spectroscopy and temperature and bias-dependent electrical transport and correlated with spatially resolved electronic properties, using surface potentiometry. The presence of carrier localization effects, induced by the phase-separated [Formula: see text] domains, and large local electric field fluctuations are reflected in the non-linear transport across the channels. Together, the results indicate a complex transport phenomenon, which may be variously dominated by tunnelling or variable range hopping or activated depending on the electronic state of the material.

3.
Nanoscale Adv ; 1(6): 2435-2443, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131965

RESUMO

We report negative photoresponse or increase of resistance in nanocomposites of n-type ZnO nanoparticles dispersed in a p-type polymer (PEDOT:PSS) under UV and visible light excitation, contrary to that of planar heterojunctions of the constituents. The underlying mechanism of charge transport, specifically negative photoresponse, is explored using spectroscopic and opto-electrical characterisation. Systemic variability in conductance, photoresponse sensitivity and rate with fractional nanoparticle loading in the nanocomposite is demonstrated. Here, photogenerated electrons in ZnO nanoparticles, trapped by the unbiased interfacial barrier, are understood to localize holes in the PEDOT:PSS conduction channel thereby increasing the overall nanocomposite resistance. Reversibility of the negative PR although with a slow decay rate bears testament to the proposed photogating mechanism as opposed to photocatalytic activity. Replacement of the p-type polymer with an electron transport matrix turns the negative photoresponse positive accentuating the role of the interfacial barrier in tuning the optoelectronic response of the composites. These hybrid materials and their unusual behaviour provide alternative strategies for building devices with novel photogating effects, exploiting the properties of their nanostructured forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA