Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Research (Wash D C) ; 6: 0056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930811

RESUMO

Efficient in vivo delivery of anti-inflammatory proteins to modulate the microenvironment of an injured spinal cord and promote neuroprotection and functional recovery is a great challenge. Nucleoside-modified messenger RNA (mRNA) has become a promising new modality that can be utilized for the safe and efficient delivery of therapeutic proteins. Here, we used lipid nanoparticle (LNP)-encapsulated human interleukin-10 (hIL-10)-encoding nucleoside-modified mRNA to induce neuroprotection and functional recovery following rat spinal cord contusion injury. Intralesional administration of hIL-10 mRNA-LNP to rats led to a remarkable reduction of the microglia/macrophage reaction in the injured spinal segment and induced significant functional recovery compared to controls. Furthermore, hIL-10 mRNA treatment induced increased expression in tissue inhibitor of matrix metalloproteinase 1 and ciliary neurotrophic factor levels in the affected spinal segment indicating a time-delayed secondary effect of IL-10 5 d after injection. Our results suggest that treatment with nucleoside-modified mRNAs encoding neuroprotective factors is an effective strategy for spinal cord injury repair.

2.
Sci Rep ; 10(1): 22414, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376249

RESUMO

Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function. In this study we investigated whether transplantation of undifferentiated human induced pluripotent stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11) spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better functional recovery than the control rats which received only contusion injury. Morphologically, the contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the sensorimotor cortex. The extent of functional improvement was inversely related to the amount of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after spinal cord contusion injury.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Traumatismos da Medula Espinal , Nicho de Células-Tronco , Transplante de Células-Tronco , Animais , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Interleucina-10/metabolismo , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
3.
Front Cell Neurosci ; 13: 182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139050

RESUMO

To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central - peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.

4.
J Neurotrauma ; 34(15): 2364-2374, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28657487

RESUMO

Ventral root avulsion induces dramatic loss of the affected spinal cord motoneurons. The neuroprotective effect of riluzole has been previously proven on the injured motoneurons: the vast majority of them can be rescued even when they have no possibility to regenerate their axons. In this study the number of injured motoneurons rescued by riluzole treatment and their capacity to reinnervate the denervated forelimb muscles was investigated. Surgical reconnection with a peripheral nerve graft between the affected spinal cord segment and the C7 spinal nerve was established immediately or with 1- and 3-week delay after avulsion. Avulsion and immediate reconnection of the motoneuron pool to the spinal nerve resulted in moderate reinnervation of the spinal nerve (281 ± 23 standard error of mean [SEM] retrogradely labeled motoneurons), whereas treatment of the injured motoneurons with riluzole yielded considerably higher numbers of reinnervating motoneurons (548 ± 18 SEM). Reconnection of the motor pool with the C7 spinal nerve with 1-week delay allowed fewer motor axons to reinnervate their targets in control and riluzole-treated animals (159 ± 21 vs. 395 ± 16 SEM). A clinically relevant 3-week delay in reconnection further reduced the number of reinnervating motoneurons (76 ± 22 SEM), but riluzole pre-treatment still enabled a significant number of rescued motoneurons (396 ± 17 SEM) to regenerate their axons into the C7 spinal nerve. These results show that those injured adult motoneurons that are rescued by riluzole treatment started immediately after the avulsion injury are able to reinnervate their targets even if they are provided with a conduit several weeks after the primary injury. This finding suggests that partial rescue of injured motoneurons with riluzole in patients who suffered a brachial plexus avulsion injury may provide an available pool of surviving motoneurons for late reconnection/reimplantation surgeries.


Assuntos
Neurônios Motores/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Animais , Plexo Braquial/efeitos dos fármacos , Vértebras Cervicais , Feminino , Radiculopatia/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
5.
Neural Regen Res ; 20(6): 1789-1800, 2025 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104116

RESUMO

JOURNAL/nrgr/04.03/01300535-202506000-00029/figure1/v/2024-08-05T133530Z/r/image-tiff Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits (tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects (typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk+ tNGCs with the tubes without holes (silk- tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk+ tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk+ group was found compared with autologous nerve transplants and silk-, accompanied by improved axon regeneration at the distal coaptation point compared with the silk- tNGCs at 7 weeks postoperatively. In the 15-mm (critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk+ tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk+ tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA