RESUMO
Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids.
RESUMO
Understanding the key steps that drive the laser-based synthesis of colloids is a prerequisite for learning how to optimize the ablation process in terms of nanoparticle output and functional design of the nanomaterials. Even though many studies focus on cavitation bubble formation using single-pulse ablation conditions, the ablation efficiency and nanoparticle properties are typically investigated under prolonged ablation conditions with repetition rate lasers. Linking single-pulse and multiple-pulse ablation is difficult due to limitations induced by gas formation cross-effects, which occur on longer timescales and depend on the target materials' oxidation-sensitivity. Therefore, this study investigates the ablation and cavitation bubble dynamics under nanosecond, single laser pulse conditions for six different bulk materials (Au, Ag, Cu, Fe, Ti, and Al). Also, the effective threshold fluences, ablation volumes, and penetration depths are quantified for these materials. The thermal and chemical properties of the corresponding bulk materials not only favor the formation of larger spot sizes but also lead to the highest molar ablation efficiencies for low melting materials such as aluminum. Furthermore, the concept of the cavitation bubble growth linked with the oxidation sensitivity of the ablated material is discussed. With this, evidence is provided that intensive chemical reactions occurring during the very early timescale of ablation are significantly enhanced by the bubble collapse.
RESUMO
The productivity of nanoparticles formed by laser ablation of gold-silver and iron-gold alloy as well as copper and iron-nickel alloy targets in water is correlated with the formation of laser-induced surface structures. At a laser fluence optimized for maximum nanoparticle productivity, it is found that a binary alloy with an equimolar ratio forms laser-induced periodic surface structures (LIPSS) after ablation, if one of the constituent metals also form LIPSS. The ablation rate of nanoparticles linearly depends on the laser fluence if LIPSS is not formed, while a logarithmic trend and a decrease in productivity is evident when LIPSS is formed. To cancel LIPSS formation and recover from this decrease, a change to circularly polarized light is performed and an increase in nanoparticle productivity of more than 30% is observed.
RESUMO
Modification of the size and phase composition of magnetic oxide nanomaterials dispersed in liquids by laser synthesis and processing of colloids has high implications for applications in biomedicine, catalysis and for nanoparticle-polymer composites. Controlling these properties for ternary oxides, however, is challenging with typical additives like salts and ligands and can lead to unwanted byproducts and various phases. In our study, we demonstrate how additive-free pulsed laser post-processing (LPP) of colloidal yttrium iron oxide nanoparticles using high repetition rates and power at 355 nm laser wavelength can be used for phase transformation and phase purification of the garnet structure by variation of the laser fluence as well as the applied energy dose. Furthermore, LPP allows particle size modification between 5 nm (ps laser) and 20 nm (ns laser) and significant increase of the monodispersity. Resulting colloidal nanoparticles are investigated regarding their size, structure and temperature-dependent magnetic properties.
Assuntos
Ferro/química , Lasers , Nanopartículas/química , Transição de Fase , Ítrio/química , Compostos Férricos/química , Nanopartículas Magnéticas de Óxido de Ferro/químicaRESUMO
Pulsed laser ablation in liquids (PLAL) is a multi-scale process, which is widely studied either in batch ablation with prolonged target irradiation as well as mechanistic investigations, in a defined (single-shot) process. However, fundamental studies on defined pulse series are rare. We have investigated the effect of a developing rough morphology of the target surface on the PLAL process with nanosecond pulses and, partially, picosecond pulses. At low fluence the cavitation bubble growth as well as the ablation yield depend on the irradiation history of the target. The bubble size increases with repeated irradiation on one spot for the first 2-30 pulses as well as with the applied dose. This is discussed within the framework of incubation effects. Incubation is found to be important, resulting in a bubble volume increase by a factor of six or more between pristine and corrugated targets. The target surface, changing from smooth to corrugated, induces a more efficient localization of laser energy at the solid-liquid interface. This is accompanied by a suppressed reflectivity and more efficient coupling of energy into the laser-induced plasma. Thus, the cavitation bubble size increases as well as ablation being enhanced. At high fluence, such incubation is masked by the rapid development of surface damage within the first shots, which eventually would lead to a reduction of bubble sizes.
RESUMO
Laser ablation of gold in liquids with nanosecond laser pulses in aqueous solutions of inorganic electrolytes and macromolecular ligands for gold nanoparticle size quenching is probed inside the laser-induced cavitation bubble by in situ X-ray multicontrast imaging with a Hartmann mask (XHI). It is found that (i) the in situ size quenching power of sodium chloride (NaCl) in comparison to the ablation in pure water can be observed by the scattering contrast from XHI already inside the cavitation bubble, while (ii) for polyvinylpyrrolidone (PVP) as a macromolecular model ligand an in situ size quenching cannot be observed. Complementary ex situ characterization confirms the overall size quenching ability of both additive types NaCl and PVP. The macromolecular ligand as well as its monomer N-vinylpyrrolidone (NVP) are mainly effective for growth quenching of larger nanoparticles on later time scales, leading to the conclusion of an alternative interaction mechanism with ablated nanoparticles compared to the electrolyte NaCl, probably outside of the cavitation bubble, in the surrounding liquid phase. While monomer and polymer have similar effects on the particle properties, with the polymer being slightly more efficient, only the polymer is effective against hydrodynamic aggregation.
RESUMO
Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts. Accurate size control of LSPC-synthesized materials ranging from quantum dots to submicrometer spheres and recent upscaling advancement toward the multiple-gram scale are helpful for extending the applicability of LSPC-synthesized nanomaterials to various fields. By discussing key reports on both the fundamentals and the applications related to laser ablation, fragmentation, and melting in liquids, this Article presents a timely and critical review of this emerging topic.
Assuntos
Coloides/química , Lasers , NanopartículasRESUMO
Laser ablation in liquids (LAL) drives the decomposition of the liquid inducing the formation of a large number of different redox equivalents and gases. This not only leads to shielding effects and a decrease of the nanoparticle (NP) productivity but also can directly affect the NP properties such as the oxidation degree. In this study, we demonstrate that liquid decomposition during laser ablation in water is triggered by the redox activity of the 7 different bulk materials used; Au, Pt, Ag, Cu, Fe, Ti and Al, as well as by the reactivity of water with the plasma. Laser ablation of less-noble metals like aluminum leads to a massive gas evolution up to 390 cm3 per hour with molar hydrogen to oxygen ratios of 17.1. For more noble metals such as gold and platinum, water splitting induced by LAL is the dominant feature leading to gas volume formation rates of 10 up to 30 cm3 per hour and molar hydrogen to oxygen ratios of 1.2. We quantify the material-dependent ablation rate, shielding effects as well as the amount of hydrogen peroxide produced, directly affecting the yield and oxidation of the nanoparticles on the long-time scale.
RESUMO
Correction for 'Determining the role of redox-active materials during laser-induced water decomposition' by Mark-Robert Kalus et al., Phys. Chem. Chem. Phys., 2019, 21, 18636-18651.
RESUMO
The distinctive feature of upconverting compounds to absorb and emit light in the near-infrared region has made upconverting nanoparticles of great interest in various application fields. Nevertheless, these colloids show a highly hydrophobic behavior, and therefore, the use of a proper stabilizing agent is necessary in most cases. Although few chemical techniques for colloid stabilization are available, it is still difficult to achieve a fully reproducible synthesis method for stable upconverting nanoparticle colloids. In this work, upconversion 18 %Yb:1 %Er:NaYF4 nanoparticles were produced by ultrafast pulsed laser ablation in a water and 2-[2-(2-methoxyethoxy)- ethoxy]acetic acid (MEEAA) environment to assess the stabilization effect of the surfactant on the nanoparticle colloid properties. The effects of the laser fluence and MEEAA concentration on the nanoparticles' properties were investigated by TEM, EDS, and emission spectra analyses. The results show that ultrashort pulsed laser ablation in liquid allows generating highly spherical nanoparticles with conserved stoichiometry and optical properties. Moreover, it is possible to obtain colloids with significantly higher stability and preserved optical properties by one-step PLAL processes directly in the MEEAA environment.
RESUMO
Gold is one of the most valuable materials, and its monetary value is enhanced by size reduction from bullions to colloidal nanoparticles by a factor of 450. Wet-chemical reduction with subsequent centrifugation and pulsed laser ablation in liquids are frequently used for pure colloidal gold synthesis. Both methods provide similar physicochemical nanoparticle properties, but are very different synthesis techniques. However, the costs inherent to these methods are surprisingly seldom discussed. Both methods have in common that the labor effort poses the majority of synthesis costs. Besides an increase in batch size and mass concentration, especially an increase of the nanoparticle productivity via higher laser power and centrifugation capacity reduces synthesis costs if pilot- or industrial-scale applications are intended. In this case, laser-based synthesis is more economical if its productivity exceeds a break-even value of 550â mg h-1 , where the costs arising are limited by the metal costs. In contrast to industrial scale production, wet-chemical synthesis is more feasible for laboratory-scale applications, especially if the advantageous nanoparticle properties provided by laser ablation in liquids are not needed.
RESUMO
Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3â nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.
RESUMO
The ablation yield and bubble-formation process during nanosecond pulsed-laser ablation of silver in water are analysed by stroboscopic videography, time-resolved X-ray radiography and in situ UV/Vis spectroscopy. This process is studied as function of lens-target distance and laser fluence. Both the ablation yield and the bubble-cavitation process exhibit threshold behaviour as a function of fluence, which is linked to the efficiency of coupling of energy at the water/target interface. Although ablation happens below this threshold, quantitative material emission is linked to bubble formation. Above the threshold, both bubble size and ablation show linear behaviour.
RESUMO
During laser synthesis of colloids, cavitation bubbles with lifetimes in the microsecond-scale form and shield the laser pulse leading to a decrease in nanoparticle output. A second type of productivity-limiting bubble that severely affects the productivity of the process is often neglected. With lifetimes from milliseconds to seconds, these persistent bubbles are systematically studied in this work by quantifying their composition, amount, size and dwell time in liquids with different viscosities and by relating the results to the nanoparticle productivities. It is found that during synthesis in water, water splitting occurs leading to persistent bubbles consisting of hydrogen and oxygen. In glycols, hydrogen and molecular carbon species containing microbubbles are formed. These persistent microbubbles shield up to 65% of the incoming laser beam depending on the liquid as well as the laser fluence and require attention by means of reducing their dwell time in the ablation zone and enhancing the nanoparticle output by liquid flow. The highest productivities and monodisperse quality are achieved in liquids with the lowest viscosities.
RESUMO
Utilizing a novel laser system consisting of a 500 W, 10 MHz, 3 ps laser source which is fully synchronized with a polygon scanner reaching scanning speeds up to 500 m/s, we explore the possibilities to increase the productivity of nanoparticle synthesis by laser ablation in liquids. By exploiting the high scanning speed, laser-induced cavitation bubbles are spatially bypassed at high repetition rates and continuous multigram ablation rates up to 4 g/h are demonstrated for platinum, gold, silver, aluminum, copper, and titanium. Furthermore, the applicable, ablation-effective repetition rate is increased by two orders of magnitude. The ultrafast ablation mechanisms are investigated for different laser fluences, repetition rates, interpulse distances, and ablation times, while the resulting trends are successfully described by validating a model developed for ultrafast laser ablation in air to hold in liquids as well.
RESUMO
The synthesis of catalysis-relevant nanoparticles such as platinum and gold is demonstrated with productivities of 4 g h(-1) for pulsed laser ablation in liquids (PLAL). The major drawback of low productivity of PLAL is overcome by utilizing a novel ultrafast high-repetition rate laser system combined with a polygon scanner that reaches scanning speeds up to 500 m s(-1). This high scanning speed is exploited to spatially bypass the laser-induced cavitation bubbles at MHz-repetition rates resulting in an increase of the applicable, ablation-effective, repetition rate for PLAL by two orders of magnitude. The particle size, morphology and oxidation state of fully automated synthesized colloids are analyzed while the ablation mechanisms are studied for different laser fluences, repetition rates, interpulse distances, ablation times, volumetric flow rates and focus positions. It is found that at high scanning speeds and high repetition rate PLAL the ablation process is stable in crystallite size and decoupled from shielding and liquid effects that conventionally occur during low-speed PLAL.
RESUMO
3D laser lithography of a negative photopolymer (zirconium/silicon hybrid solgel SZ2080) doped with gold nanoparticles (Au NPs) is performed with a 515 nm and 300 fs laser system and the effect of doping is explored. By varying the laser-generated Au NP doping concentration from 4.8 · 10(-6) wt% to 9.8 · 10(-3) wt% we find that the fabricated line widths are enlarged by up to 14.8% compared to structures achieved in pure SZ2080. While implicating a positive effect on the photosensitivity, the doping has no adverse impact on the mechanical quality of intricate 3D microstructures produced from the doped nanocompound. Additionally, we found that SZ2080 increases the long term (â¼months) colloidal stability of Au NPs in isopropanol. By discussing the nanoparticle-light interaction in the 3D polymer structures we provide implications that our findings might have on other fields, such as biomedicine and photonics.
RESUMO
Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 µs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 µm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed.
RESUMO
We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.
RESUMO
Pulsed laser ablation in liquids (PLAL) is a versatile technique to produce high-purity colloidal nanoparticles. Despite considerable recent progress in increasing the productivity of the technique, there is still significant demand for a practical, cost-effective method for upscaling PLAL synthesis. Here we employ and unveil the fundamentals of multi-beam (MB) PLAL. The MB-PLAL upscaling approach can bypass the cavitation bubble, the main limiting factor of PLAL efficiency, by splitting the laser beam into several beams using static diffractive optical elements (DOEs). A multimetallic high-entropy alloy CrFeCoNiMn was used as a model material and the productivity of its nanoparticles in the MB-PLAL setup was investigated and compared with that in the standard single-beam PLAL. We demonstrate that the proposed multi-beam method helps to bypass the cavitation bubble both temporally (lower pulse repetition rates can be used while keeping the optimum processing fluence) and spatially (lower beam scanning speeds are needed) and thus dramatically increases the nanoparticle yield. Time-resolved imaging of the cavitation bubble was performed to correlate the observed production efficiencies with the bubble bypassing. The results suggest that nanoparticle PLAL productivity at the level of g/h can be achieved by the proposed multi-beam strategy using compact kW-class lasers and simple inexpensive scanning systems.