Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(9): 583-602, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513718

RESUMO

As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.


Assuntos
Núcleo Celular , Cromatina , Diferenciação Celular , Núcleo Celular/genética , Cromatina/metabolismo , Citoesqueleto/metabolismo , Humanos , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 121(12): e2306818121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489386

RESUMO

Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels, or highly curved protrusions of other cells. Recent in vitro experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed "curvotaxis." The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a "minimal cell" model which is composed of a vesicle that contains curved membrane protein complexes, that exert protrusive forces on the membrane (representing the pressure due to actin polymerization). This minimal-cell model gives rise to spontaneous emergence of a motile phenotype, driven by a lamellipodia-like leading edge. By systematically screening the behavior of this model on different types of curved substrates (sinusoidal, cylinder, and tube), we show that minimal ingredients and energy terms capture the experimental data. The model recovers the observed migration on the sinusoidal substrate, where cells move along the grooves (minima), while avoiding motion along the ridges. In addition, the model predicts the tendency of cells to migrate circumferentially on convex substrates and axially on concave ones. Both of these predictions are verified experimentally, on several cell types. Altogether, our results identify the minimization of membrane-substrate adhesion energy and binding energy between the membrane protein complexes as key players of curvotaxis in cell migration.


Assuntos
Actinas , Proteínas de Membrana , Movimento Celular , Fenômenos Físicos , Fenótipo , Actinas/metabolismo
3.
EMBO J ; 41(7): e108747, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266581

RESUMO

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Assuntos
Gastrulação , Mesoderma , Animais , Embrião de Mamíferos , Membranas Extraembrionárias , Queratinas/genética , Queratinas/metabolismo , Mesoderma/metabolismo , Camundongos
4.
Proc Natl Acad Sci U S A ; 119(48): e2210379119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409912

RESUMO

While cell migration can be directed by various mechanical cues such as force, deformation, stiffness, or flow, the associated mechanisms and functions may remain elusive. Single cell migration against flow, repeatedly reported with leukocytes, is arguably considered as active and mediated by integrin mechanotransduction, or passive and determined by a mechanical bias. Here, we reveal a phenotype of flow mechanotaxis with fish epithelial keratocytes that orient upstream or downstream at shear stresses around tens of dyn cm-2. We show that each cell has an intrinsic orientation that results from the mechanical interaction of flow with its morphology. The bulbous trailing edge of a keratocyte generates a hydrodynamical torque under flow that stabilizes an upstream orientation, just as the heavy lower edge of a roly-poly toy generates a gravitational torque that stabilizes an upright position. In turn, the wide and flat leading edge of keratocytes destabilizes upstream orientation, allowing the existence of two distinct phenotypes. To formalize these observations, we propose a simple mechanical model that considers keratocyte morphology as a hemisphere preceded by a wide thin sheet. Our findings show that this model can recapitulate the phase diagram of single cell orientation under flow without adjustable parameters. From a larger perspective, this passive mechanism of keratocytes flow mechanotaxis implies a potential absence of physiological function and evolution-driven process.


Assuntos
Integrinas , Mecanotransdução Celular , Animais , Movimento Celular/fisiologia , Estresse Mecânico , Eritrócitos Anormais
5.
Biotechnol Bioeng ; 117(9): 2887-2896, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32484903

RESUMO

The development of epithelial lumens in ducts is essential to the functioning of various organs and in organogenesis. Ductal elongation requires the collective migration of cell cohorts in three-dimensional (3D) confined spaces, while maintaining their epithelial integrity. Epithelial lumens generally adopt circular morphologies, however abnormalities in complex physiological environments can lead to the narrowing of glandular spaces that adopt elongated and slit-like morphologies. Here, we describe a simple method to form epithelial tissues in microchannels of various widths (100-300 µm) with a constant height of 25 µm that mimic elongated geometries of glandular spaces. The significance of this biomimetic platform has been evidenced by studying the migration of epithelial cell sheets inside these narrow slits of varying dimensions. We show that the growth of epithelial tissues in 3D-confined slits leads to a gradient of cell density along the slit axis and that the migration cell velocity depends on the extent of the spatial confinement. Our findings indicate that nuclear orientation is higher for leader cells and depends on the slit width, whereas YAP protein was predominantly localized in the nucleus of leader cells. This method will pave the way to studies aiming at understanding how 3D-confined spaces, which are reminiscent of in vivo pathological conditions, can affect the growth and the homeostasis of epithelial tissues.


Assuntos
Movimento Celular/fisiologia , Epitélio/metabolismo , Microtecnologia/instrumentação , Técnicas de Cultura de Tecidos , Animais , Núcleo Celular/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Desenho de Equipamento , Células Madin Darby de Rim Canino , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
6.
Nano Lett ; 19(11): 7681-7690, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31593477

RESUMO

We report on metal-assisted chemical etching of Si for the synthesis of mechanically stable, hybrid crystallographic orientation Si superstructures with high aspect ratio, above 200. This method sustains high etching rates and facilitates reproducible results. The protocol enables the control of the number, angle, and location of the kinks via successive etch-quench sequences. We analyzed relevant Au mask catalyst features to systematically assess their impact on a wide spectrum of etched morphologies that can be easily attained and customized by fine-tuning of the critical etching parameters. For instance, the designed kinked Si nanowires can be incorporated in biological cells without affecting their viability. An accessible numerical model is provided to explain the etch profiles and the physicochemical events at the Si/Au-electrolyte interface and offers guidelines for the development of finite-element modeling of metal-assisted Si chemical etching.

7.
Adv Healthc Mater ; 13(4): e2203377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820698

RESUMO

The optimal functioning of many organs relies on the curved architecture of their epithelial tissues. However, the mechanoresponse of epithelia to changes in curvature remains misunderstood. Here, bowl-shaped microwells in hydrogels are designed via photopolymerization to faithfully replicate the shape and dimensions of lobular structures. Leveraging these hydrogel-based microwells, curved epithelial monolayers are engineered, and how in-plane and Gaussian curvatures at the microwell entrance influence epithelial behavior is investigated. Cells and nuclei around the microwell edge display a more pronounced centripetal orientation as the in-plane curvature decreases, and enhanced cell straightness and speed. Moreover, cells reorganize their actin cytoskeleton by forming a supracellular actin cable at the microwell edge, with its size becoming more pronounced as the in-plane curvature decreases. The Gaussian curvature at the microwell entrance enhances the maturation of the supracellular actin cable architecture and leads to a vertical orientation of nuclei toward the bottom of the microwell. Increasing Gaussian curvature results in flattened and elongated nuclear morphologies characterized by highly compacted chromatin states. This approach provides better understanding of the mechanoresponse of curved epithelial monolayers curvatures lining lobular structures. In addition, bowl-shaped microwells offer a powerful platform to study curvature-dependent mechanotransduction pathways in anatomically relevant 3D structures.


Assuntos
Actinas , Mecanotransdução Celular , Hidrogéis
8.
Biomaterials ; 305: 122426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134473

RESUMO

Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.


Assuntos
Microglia , Fagócitos , Microglia/metabolismo , Sistema Nervoso Central , Encéfalo , Transdução de Sinais , Lipopolissacarídeos/farmacologia
9.
Front Cell Dev Biol ; 10: 823857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419366

RESUMO

Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.

10.
Biophys Rev (Melville) ; 3(1): 011305, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505223

RESUMO

The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.

11.
ACS Chem Neurosci ; 12(20): 3885-3897, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34614352

RESUMO

Deformation, compression, or stretching of brain tissues cause diffuse axonal injury (DAI) and induce structural and functional alterations of astrocytes, the most abundant cell type in the brain. To gain further insight into the role of mechanically activated astrocytes on neuronal networks, this study was designed to investigate whether cytokines released by mechanically activated astrocytes can affect the growth and synaptic connections of cortical neuronal networks. Astrocytes were cultivated on elastic membranes and subjected to repetitive mechanical insults, whereas well-defined protein micropatterns were used to form standardized neuronal networks. GFAP staining showed that astrocytes were mechanically activated after two cycles of stretch and mesoscale discovery assays indicated that injured astrocytes released four major cytokines. To understand the role of these cytokines, neuronal networks were cultured with the supernatant of healthy or mechanically activated astrocytes, and the individual contribution of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) was studied. We found that the supernatant of two-cycle stretched astrocytes decreased presynaptic terminals and indicated that TNF-α must be considered a key player of the synaptic loss. Furthermore, our results indicate that cytokines released by injured astrocytes significantly modulate the balance between TNFR1 and TNFR2 receptors by enhancing R2 receptors. We demonstrated that TNF-α is not involved in this process, suggesting a predominant role of other secreted cytokines. Together, these results contribute to a better understanding of the consequences of repetitive astrocyte deformations and highlight the role of inflammatory signaling pathways in synaptic plasticity and modulation of TNFR1 and TNFR2 receptors.


Assuntos
Astrócitos , Receptores Tipo II do Fator de Necrose Tumoral , Células Cultivadas , Citocinas , Humanos , Fator de Necrose Tumoral alfa
12.
Sci Rep ; 11(1): 5811, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712641

RESUMO

The ability of cells to respond to substrate-bound protein gradients is crucial for many physiological processes, such as immune response, neurogenesis and cancer cell migration. However, the difficulty to produce well-controlled protein gradients has long been a limitation to our understanding of collective cell migration in response to haptotaxis. Here we use a photopatterning technique to create circular, square and linear fibronectin (FN) gradients on two-dimensional (2D) culture substrates. We observed that epithelial cells spread preferentially on zones of higher FN density, creating rounded or elongated gaps within epithelial tissues over circular or linear FN gradients, respectively. Using time-lapse experiments, we demonstrated that the gap closure mechanism in a 2D haptotaxis model requires a significant increase of the leader cell area. In addition, we found that gap closures are slower on decreasing FN densities than on homogenous FN-coated substrate and that fresh closed gaps are characterized by a lower cell density. Interestingly, our results showed that cell proliferation increases in the closed gap region after maturation to restore the cell density, but that cell-cell adhesive junctions remain weaker in scarred epithelial zones. Taken together, our findings provide a better understanding of the wound healing process over protein gradients, which are reminiscent of haptotaxis.

13.
Lab Chip ; 10(11): 1459-67, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20480111

RESUMO

This article describes a simple and low-tech microfluidic method for single-cell experimentation, which permits cell selection without stress, cell manipulation with fine control, and passive self-exclusion of all undesired super-micronic particles. The method requires only conventional soft lithography microfabrication techniques and is applicable to any microfluidic single-cell circuitry. The principle relies on a bypass plugged in parallel with a single-cell assay device and collecting 97% of the flow rate. Cell selection into the single cell device is performed by moving the cell of interest back and forth in the vicinity of the junction between the bypass and the analysis circuitry. Cell navigation is finely controlled by hydrostatic pressure via centimetre-scale actuation of external macroscopic reservoirs connected to the device. We provide successful examples of biomechanical and biochemical assays on living human leukocytes passing through 4 mum wide capillaries. The blebbing process dynamics are monitored by conventional 24 fps videomicroscopy and subcellular cytoskeleton organization is imaged by on-chip immunostaining.


Assuntos
Bioensaio/instrumentação , Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Sistemas Microeletromecânicos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micromanipulação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Cell Mol Bioeng ; 13(1): 87-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030110

RESUMO

INTRODUCTION: The orientation of collagen fibers in native tissues plays an important role in cell signaling and mediates the progression of tumor cells in breast cancer by a contact guidance mechanism. Understanding how migration of epithelial cells is directed by the alignment of collagen fibers requires in vitro assays with standardized orientations of collagen fibers. METHODS: To address this issue, we produced micro-stripes with aligned collagen fibers using an easy-to-use and versatile approach based on the aspiration of a collagen solution within a microchannel. Glass coverslips were functionalized with a (3-aminopropyl)triethoxysilane/glutaraldehyde linkage to covalently anchor micro-stripes of aligned collagen fibers, whereas microchannels were functionalized with a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nonionic triblock polymer to prevent adhesion of the collagen micro-stripes. RESULTS: Using this strategy, microchannels can be peeled off to expose micro-stripes of aligned collagen fibers without affecting their mechanical integrity. We used time-lapse confocal reflection microscopy to characterize the polymerization kinetics of collagen networks for different concentrations and the orientation of collagen fibers as a function of the microchannel width. Our results indicate a non-linear concentration dependence of the area of fluorescence, suggesting that the architecture of collagen networks is sensitive to small changes in concentration. We show the possibility to influence the collagen fibril coverage by adjusting the concentration of the collagen solution. CONCLUSION: We applied this novel approach to study the migration of epithelial cells, demonstrating that collagen micro-stripes with aligned fibers represent a valuable in-vitro assay for studying cell contact guidance mechanisms.

15.
Biophys J ; 96(10): 4308-18, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19450501

RESUMO

Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments.


Assuntos
Actinas/metabolismo , Capilares/citologia , Movimento Celular , Citoesqueleto/metabolismo , Leucócitos/citologia , Microfluídica , Miosina Tipo II/metabolismo , Actomiosina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Forma Celular , Humanos , Cinética
16.
Sci Rep ; 9(1): 15565, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664178

RESUMO

Skeletal muscle fibers are formed by the fusion of mononucleated myoblasts into long linear myotubes, which differentiate and reorganize into multinucleated myofibers that assemble in bundles to form skeletal muscles. This fundamental process requires the elongation of myoblasts into a bipolar shape, although a complete understanding of the mechanisms governing skeletal muscle fusion is lacking. To address this question, we consider cell aspect ratio, actomyosin contractility and the Hippo pathway member YAP as potential regulators of the fusion of myoblasts into myotubes. Using fibronectin micropatterns of different geometries and traction force microscopy, we investigated how myoblast elongation affects actomyosin contractility. Our findings indicate that cell elongation enhances actomyosin contractility in myoblasts, which regulate their actin network to their spreading area. Interestingly, we found that the contractility of cell pairs increased after their fusion and raise on elongated morphologies. Furthermore, our findings indicate that myoblast elongation modulates nuclear orientation and triggers cytoplasmic localization of YAP, increasing evidence that YAP is a key regulator of mechanotransduction in myoblasts. Taken together, our findings support a mechanical model where actomyosin contractility scales with myoblast elongation and enhances the differentiation of myoblasts into myotubes through YAP nuclear export.


Assuntos
Actomiosina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Actinas/genética , Actomiosina/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Forma Celular/genética , Tamanho Celular , Fibronectinas/genética , Via de Sinalização Hippo , Camundongos , Contração Muscular/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Proteínas de Sinalização YAP
17.
Artigo em Inglês | MEDLINE | ID: mdl-31380357

RESUMO

Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in "outside-in" and "inside-out" signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.

18.
Opt Express ; 16(7): 4547-58, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542552

RESUMO

We present a model describing the image formation in DIC (Differential Interference Contrast) mode microscopy, by including the actual refractive indexes and reflection coefficients of objects and substrates. We calculate the contrast of flat and level objects of nanometric thickness versus the bias retardation Gamma and the numerical aperture NA. We show that high contrasts, of the edge and of the inner object, can be achieved in DIC mode with special anti-reflective substrates and large NA values. The calculations agree with contrast measurements on nanometric steps of silica and explain also the extreme ability to detect single molecules (stretched DNA molecules).


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Refratometria/métodos
19.
PLoS One ; 13(12): e0207881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540777

RESUMO

Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy in Wet-Surface Ellipsometric Enhanced Contrast (Wet-SEEC) mode offers imaging and measurement of thin films at solid/liquid interfaces in the range 1-500 nm with lateral optical resolution. A live, label-free and noninvasive methodology integrated with microfluidic devices allowed here characterization of polymers and proteins patterns together with corresponding phenotypes of living cells.


Assuntos
Microscopia/métodos , Tomografia Computadorizada por Raios X/métodos , Fricção , Polímeros , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA