Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108452

RESUMO

Plant breeding is continuously evolving to develop new cultivars with the desired traits in the most efficient way [...].


Assuntos
Melhoramento Vegetal , Poaceae , Poaceae/genética , Plantas , Fenótipo
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675215

RESUMO

Knowledge of the genetic basis of traits controlling phenology, differentiation patterns, and environmental adaptation is essential to develop new cultivars under climate change conditions. Landrace collections are an appropriate platform to study the hidden variation caused by crop breeding. The use of genome-wide association analysis for phenology, climatic data and differentiation among Mediterranean landraces led to the identification of 651 marker-trait associations that could be grouped in 46 QTL hotspots. A candidate gene analysis using the annotation of the genome sequence of the wheat cultivar 'Chinese Spring' detected 1097 gene models within 33 selected QTL hotspots. From all the gene models, 42 were shown to be differentially expressed (upregulated) under abiotic stress conditions, and 9 were selected based on their levels of expression. Different gene families previously reported for their involvement in different stress responses were found (protein kinases, ras-like GTP binding proteins and ethylene-responsive transcription factors). Finally, the synteny analysis in the QTL hotspots regions among the genomes of wheat and other cereal species identified 23, 21 and 7 ortho-QTLs for Brachypodium, rice and maize, respectively, confirming the importance of these loci.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Triticum/genética , Estudos Prospectivos , Melhoramento Vegetal
3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409181

RESUMO

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high ß-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain ß-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with ß-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain ß-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.


Assuntos
Aegilops , beta-Glucanas , Aegilops/genética , Fibras na Dieta , Genes de Plantas , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética , Água
4.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948157

RESUMO

Following the success of the first topic, the special issue of "Wheat breeding through genetic and physical mapping 2" has been re-proposed in order to keep current the recent advancement in research on genetic and physical mapping of candidate genes for agronomically important traits, in studies of the regulatory sequence for biotic and abiotic stress resistance [...].


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento
5.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228054

RESUMO

The Special Issue of "Wheat breeding through genetic and physical mapping" aimed to collect recent advances in research on the genetic and physical mapping of quantitative trait loci (QTLs), candidate genes and regulatory sequences involved in the control of wheat's important agronomic traits, such as grain yield and quality, biotic and abiotic stress resistance [...].


Assuntos
Grão Comestível/genética , Genoma de Planta , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/química , Cruzamentos Genéticos , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Ligação Genética , Humanos , Melhoramento Vegetal , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
6.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291583

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.


Assuntos
Aminoácido Oxirredutases/genética , Glutamato-Amônia Ligase/genética , Proteínas de Grãos/metabolismo , Locos de Características Quantitativas , Triticum/genética , Aminoácido Oxirredutases/metabolismo , Sequência de Bases , Cromossomos de Plantas , Glutamato-Amônia Ligase/metabolismo , Fenótipo , Melhoramento Vegetal , Regiões Promotoras Genéticas , Triticum/metabolismo
7.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987666

RESUMO

Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Triticum/genética , Biomarcadores , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/genética
8.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331292

RESUMO

Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine. However, this dietary component can be digested by microorganisms in the large intestine and imparts physiological benefits at daily intake levels of 30-35 g. Dietary fibre in cereal grains largely comprises cell wall polymers and includes insoluble (cellulose, part of the hemicellulose component and lignin) and soluble (arabinoxylans and (1,3;1,4)-ß-glucans) fibre. More specifically, certain components provide immunomodulatory and cholesterol lowering activity, faecal bulking effects, enhanced absorption of certain minerals, prebiotic effects and, through these effects, reduce the risk of type II diabetes, cardiovascular disease and colorectal cancer. Thus, dietary fibre is attracting increasing interest from cereal processors, producers and consumers. Compared with other components of the durum wheat grain, fibre components have not been studied extensively. Here, we have summarised the current status of knowledge on the genetic control of arabinoxylan and (1,3;1,4)-ß-glucan synthesis and accumulation in durum wheat grain. Indeed, the recent results obtained in durum wheat open the way for the improvement of these important cereal quality parameters.


Assuntos
Polissacarídeos/química , Triticum/química , Triticum/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Fenômenos Químicos , Fibras na Dieta/análise , Grão Comestível/química , Glucanos/biossíntese , Glucanos/química , Interações Hospedeiro-Patógeno , Estrutura Molecular , Nutrientes/análise , Nutrientes/química , Polissacarídeos/análise , Polissacarídeos/biossíntese , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Xilanos/biossíntese , Xilanos/química
9.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630023

RESUMO

Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.


Assuntos
Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Lipoxigenase/genética , Pigmentação/genética , Triticum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Lipoxigenase/metabolismo , Região do Mediterrâneo , Locos de Características Quantitativas , Triticum/enzimologia
10.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563213

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Tetraploidia , Triticum/microbiologia
11.
BMC Genomics ; 18(1): 122, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143400

RESUMO

BACKGROUND: In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. RESULTS: Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. CONCLUSIONS: The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.


Assuntos
Carotenoides/metabolismo , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Triticum/genética , Triticum/metabolismo , Carotenoides/biossíntese , Mapeamento Cromossômico , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Redes e Vias Metabólicas , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/classificação
12.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635630

RESUMO

High-density genetic linkage maps of crop species are particularly useful in detecting qualitative and quantitative trait loci for important agronomic traits and in improving the power of classical approaches to identify candidate genes. The aim of this study was to develop a high-density genetic linkage map in a durum wheat recombinant inbred lines population (RIL) derived from two elite wheat cultivars and to identify, characterize and correlate Quantitative Trait Loci (QTL) for ß-glucan, protein content, grain yield per spike and heading time. A dense map constructed by genotyping the RIL population with the wheat 90K iSelect array included 5444 single nucleotide polymorphism (SNP) markers distributed in 36 linkage groups. Data for ß-glucan and protein content, grain yield per spike and heading time were obtained from replicated trials conducted at two locations in southern Italy. A total of 19 QTL were detected in different chromosome regions. In particular, three QTL for ß-glucan content were detected on chromosomes 2A and 2B (two loci); eight QTL controlling grain protein content were detected on chromosomes 1B, 2B, 3B (two loci), 4A, 5A, 7A and 7B; seven QTL for grain yield per spike were identified on chromosomes 1A, 2B, 3A (two loci), 3B (two loci) and 6B; and one marker-trait association was detected on chromosome 2A for heading time. The last was co-located with a ß-glucan QTL, and the two QTL appeared to be negatively correlated. A genome scan for genomic regions controlling the traits and SNP annotated sequences identified five putative candidate genes involved in different biosynthesis pathways (ß-glucosidase, GLU1a; APETALA2, TaAP2; gigantea3, TaGI3; 14-3-3 protein, Ta14A; and photoperiod sensitivity, Ppd-A1). This study provides additional information on QTL for important agronomic traits that could be useful for marker-assisted breeding to obtain new genotypes with commercial and nutritional relevance.


Assuntos
Ligação Genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Grão Comestível/genética , Genoma de Planta , Genótipo , Melhoramento Vegetal , Proteínas de Plantas/análise , beta-Glucanas/análise , beta-Glucanas/metabolismo
13.
J Sci Food Agric ; 97(15): 5398-5405, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28503773

RESUMO

BACKGROUND: Puglia is the most important region in Italy for table grape production. Since consumers look for new products, the number of table grape varieties has greatly increased in recent years. RESULTS: In a survey in the Puglia region, we identified several years ago a potential mutation of the cv. Victoria. We described this accession in comparison with the standard Victoria for some amphelographic traits. All the characteristics were very similar to the standard Victoria except for the berry shape, which was significantly more elongated. Moreover, the berry of the mutated Victoria showed higher firmness, lightness and chroma than the standard one, with a more intense yellow colour of the skin (appreciated by consumers). The molecular characterisation with 25 SSR markers showed that normal and mutant Victoria were genetically identical at all the analysed loci, thus suggesting that the two accessions could be considered as clones with the difference in berry shape probably due to a somatic mutation. CONCLUSIONS: This mutation of the cv. Victoria may have interesting perspective for the market since consumers are always attracted by different shape and colour of the fruits (consumers buy with eyes). This accession can be an alternative clone of the already known standard Victoria. © 2017 Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Frutas/química , Vitis/química , Cor , Frutas/genética , Frutas/crescimento & desenvolvimento , Itália , Vitis/genética , Vitis/crescimento & desenvolvimento
14.
BMC Genet ; 17: 43, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26884094

RESUMO

BACKGROUND: Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. RESULTS: In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, ß-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. CONCLUSION: We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions. The availability of this tool together with TILLING technique will expand the polymorphisms in candidate genes of agronomically important traits in wheat.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Proteínas de Plantas/genética , Triticum/genética , Alelos , Carotenoides/metabolismo , DNA de Plantas/genética , Marcadores Genéticos , Genômica/métodos , Técnicas de Genotipagem , Liases Intramoleculares/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
15.
BMC Plant Biol ; 15: 6, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597920

RESUMO

BACKGROUND: Fusarium graminearum, one of the causal agents of Fusarium Head Blight (FHB, scab), leads to severe losses in grain yield and quality due to the production of mycotoxins which are harmful to human and livestock. Different traits for FHB resistance in wheat were identified for common wheat (Triticum aestivum L.) while the sources of FHB resistance in durum wheat (Triticum turgidum ssp. Durum), one of the cereals most susceptible to F. graminearum infection, have not been found. New lines of evidence indicate that content and composition of cell wall polymers affect the susceptibility of the wall to degrading enzymes produced by pathogens during infection and can play a role in the outcome of host-pathogen interactions. The objective of our research is to identify potential cell wall biochemical traits linked to Fusariosis resistance to be transferred from a resistant common wheat to a susceptible durum wheat line. RESULTS: A detailed analysis of cell wall composition in spikes isolated from a highly resistant common wheat accession "02-5B-318", a breeding line derived from the FHB-resistant Chinese cv. Sumai-3 and a high susceptible durum wheat cv. Saragolla was performed. Significant differences in lignin monolignols composition, arabinoxylan (AX) substitutions and pectin methylesterification were found between resistant and susceptible plants. We isolated and characterized a pectin methylesterase gene WheatPME1, which we found being down regulated in the FHB-resistant line and induced by fungal infection in the susceptible wheat. CONCLUSIONS: Our results indicate cell wall traits differing between the FHB sensitive and resistant wheat genotypes, possibly related to FHB-resistance, and identify the line 02-5B-318R as a potential resource of such traits. Evidence suggests that WheatPME1 is involved in wheat response to F. graminearum.


Assuntos
Parede Celular/química , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/química , Triticum/microbiologia , Interações Hospedeiro-Patógeno , Triticum/genética
16.
Genes (Basel) ; 15(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397157

RESUMO

In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting ß-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in ß-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final ß-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of ß-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition.


Assuntos
Aegilops , beta-Glucanas , Aegilops/genética , beta-Glucanas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Triticum/genética
17.
Front Plant Sci ; 15: 1305196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550292

RESUMO

Wild emmer (Triticum turgidum ssp. dicoccoides) genotypes were studied for their high-nutritional value and good tolerance to various types of stress; for this reason, several QTL (quantitative trait loci) studies have been conducted to find favorable alleles to be introgressed into modern wheat cultivars. Given the complexity of the QTL nature, their interaction with the environment, and other QTLs, a small number of genotypes have been used in wheat breeding programs. Meta-QTL (MQTL) analysis helps to simplify the existing QTL information, identifying stable genomic regions and possible candidate genes for further allele introgression. The study aimed to identify stable QTL regions across different environmental conditions and genetic backgrounds using the QTL information of the past 14 years for different traits in wild emmer based upon 17 independent studies. A total of 41 traits were classified as quality traits (16), mineral composition traits (11), abiotic-related traits (13), and disease-related traits (1). The analysis revealed 852 QTLs distributed across all 14 chromosomes of wild emmer, with an average of 61 QTLs per chromosome. Quality traits had the highest number of QTLs (35%), followed by mineral content (33%), abiotic-related traits (28%), and disease-related traits (4%). Grain protein content (GPC) and thousand kernel weight (TKW) were associated with most of the QTLs detected. A total of 43 MQTLs were identified, simplifying the information, and reducing the average confidence interval (CI) from 22.6 to 4.78 cM. These MQTLs were associated with multiple traits across different categories. Nine candidate genes were identified for several stable MQTLs, potentially contributing to traits such as quality, mineral content, and abiotic stress resistance. These genes play essential roles in various plant processes, such as carbohydrate metabolism, nitrogen assimilation, cell wall biogenesis, and cell wall extensibility. Overall, this study underscores the importance of considering MQTL analysis in wheat breeding programs, as it identifies stable genomic regions associated with multiple traits, offering potential solutions for improving wheat varieties under diverse environmental conditions.

18.
BMC Genomics ; 14: 562, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23957646

RESUMO

BACKGROUND: Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. RESULTS: Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. CONCLUSIONS: The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Ascomicetos , Mapeamento Cromossômico , Genes de Plantas , Triticum/microbiologia
19.
BMC Genet ; 14: 114, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304553

RESUMO

BACKGROUND: The importance of wheat to the world economy, together with progresses in high-throughput next-generation DNA sequencing, have accelerated initiatives of genetic research for wheat improvement. The availability of high density linkage maps is crucial to identify genotype-phenotype associations, but also for anchoring BAC contigs to genetic maps, a strategy followed for sequencing the wheat genome. RESULTS: Here we report a genetic linkage map in a durum wheat segregating population and the study of mapped DArT markers. The linkage map consists of 126 gSSR, 31 EST-SSR and 351 DArT markers distributed in 24 linkage groups for a total length of 1,272 cM. Through bioinformatic approaches we have analysed 327 DArT clones to reveal their redundancy, syntenic and functional aspects. The DNA sequences of 174 DArT markers were assembled into a non-redundant set of 60 marker clusters. This explained the generation of clusters in very small chromosome regions across genomes. Of these DArT markers, 61 showed highly significant (Expectation < E-10) BLAST similarity to gene sequences in public databases of model species such as Brachypodium and rice. Based on sequence alignments, the analysis revealed a mosaic gene conservation, with 54 and 72 genes present in rice and Brachypodium species, respectively. CONCLUSIONS: In the present manuscript we provide a detailed DArT markers characterization and the basis for future efforts in durum wheat map comparing.


Assuntos
Brachypodium/genética , Mapeamento Cromossômico , Marcadores Genéticos , Genoma de Planta , Oryza/genética , Triticum/genética , Biologia Computacional , Etiquetas de Sequências Expressas , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites
20.
Cell Mol Biol Lett ; 18(2): 231-48, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23515937

RESUMO

Totipotent cDNA libraries representative of all the potentially expressed sequences in a genome would be of great benefit to gene expression studies. Here, we report on an innovative method for creating such a library for durum wheat (Triticum turgidum L. var. durum) and its application for gene discovery. The use of suitable quantities of 5-azacytidine during the germination phase induced the demethylation of total DNA, and the resulting seedlings potentially express all of the genes present in the genome. A new wheat microarray consisting of 4925 unigenes was developed from the totipotent cDNA library and used to screen for genes that may contribute to differences in the disease resistance of two near-isogenic lines, the durum wheat cultivar Latino and the line 5BIL-42, which are respectively susceptible and resistant to powdery mildew. Fluorescently labeled cDNA was prepared from the RNA of seedlings of the two near-isogenic wheat lines after infection with a single powdery mildew isolate under controlled conditions in the greenhouse. Hybridization to the microarray identified six genes that were differently expressed in the two lines. Four of the sequences could be assigned putative functions based on their similarity to known genes in public databases. Physical mapping of the six genes localized them to two regions of the genome: the centromeric region of chromosome 5B, where the Pm36 resistance gene was previously localized, and chromosome 6B.


Assuntos
Resistência à Doença/genética , Biblioteca Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Ascomicetos , Cromossomos de Plantas/genética , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Marcadores Genéticos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Doenças das Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA