Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Mater ; 19(5): 566-575, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932672

RESUMO

The concept of nanoparticle transport through gaps between endothelial cells (inter-endothelial gaps) in the tumour blood vessel is a central paradigm in cancer nanomedicine. The size of these gaps was found to be up to 2,000 nm. This justified the development of nanoparticles to treat solid tumours as their size is small enough to extravasate and access the tumour microenvironment. Here we show that these inter-endothelial gaps are not responsible for the transport of nanoparticles into solid tumours. Instead, we found that up to 97% of nanoparticles enter tumours using an active process through endothelial cells. This result is derived from analysis of four different mouse models, three different types of human tumours, mathematical simulation and modelling, and two different types of imaging techniques. These results challenge our current rationale for developing cancer nanomedicine and suggest that understanding these active pathways will unlock strategies to enhance tumour accumulation.


Assuntos
Ouro , Nanopartículas Metálicas , Modelos Biológicos , Neoplasias Experimentais , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nano Lett ; 20(2): 1362-1369, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31928014

RESUMO

Three-dimensional (3D) optical microscopy can be used to understand and improve the delivery of nanomedicine. However, this approach cannot be performed for analyzing liposomes in tissues because the processing step to make tissues transparent for imaging typically removes the lipids. Here, we developed a tag, termed REMNANT, that enables 3D imaging of organic materials in biological tissues. We demonstrated the utility of this tag for the 3D mapping of liposomes in intact tissues. We also showed that the tag is able to monitor the release of entrapped therapeutic agents. We found that liposomes release their cargo >100-fold faster in tissues in vivo than in conventional in vitro assays. This allowed us to design a liposomal formulation with enhanced ability to kill tumor associated macrophages. Our development opens up new opportunities for studying the chemical properties and pharmacodynamics of administered organic materials in an intact biological environment. This approach provides insight into the in vivo behavior of degradable materials, where the newly discovered information can guide the engineering of the next generation of imaging and therapeutic agents.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Humanos , Imageamento Tridimensional , Lipídeos/química , Lipossomos/química , Lipossomos/farmacologia , Camundongos , Nanomedicina , Neoplasias/patologia , Macrófagos Associados a Tumor/efeitos dos fármacos
3.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261140

RESUMO

The dysregulation of macrophage lipid metabolism drives atherosclerosis. AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics and plays essential roles regulating macrophage lipid dynamics. Here, we investigated the consequences of atherogenic lipoprotein-induced foam cell formation on downstream immunometabolic signaling in primary mouse macrophages. A variety of atherogenic low-density lipoproteins (acetylated, oxidized, and aggregated forms) activated AMPK signaling in a manner that was in part due to CD36 and calcium-related signaling. In quiescent macrophages, basal AMPK signaling was crucial for maintaining markers of lysosomal homeostasis as well as levels of key components in the lysosomal expression and regulation network. Moreover, AMPK activation resulted in targeted upregulation of members of this network via transcription factor EB. However, in lipid-induced macrophage foam cells, neither basal AMPK signaling nor its activation affected lysosomal-associated programs. These results suggest that while the sum of AMPK signaling in cultured macrophages may be anti-atherogenic, atherosclerotic input dampens the regulatory capacity of AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Células Espumosas/enzimologia , Homeostase , Lisossomos/metabolismo , Animais , Aterosclerose/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Antígenos CD36/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Ativação Enzimática , Feminino , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Transcrição Gênica , Regulação para Cima/genética
4.
Molecules ; 24(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635211

RESUMO

Activation of the transcription factor liver X receptor (LXR) has beneficial effects on macrophage lipid metabolism and inflammation, making it a potential candidate for therapeutic targeting in cardiometabolic disease. While small molecule delivery via nanomedicine has promising applications for a number of chronic diseases, questions remain as to how nanoparticle formulation might be tailored to suit different tissue microenvironments and aid in drug delivery. In the current study, we aimed to compare the in vitro drug delivering capability of three nanoparticle (NP) formulations encapsulating the LXR activator, GW-3965. We observed little difference in the base characteristics of standard PLGA-PEG NP when compared to two redox-active polymeric NP formulations, which we called redox-responsive (RR)1 and RR2. Moreover, we also observed similar uptake of these NP into primary mouse macrophages. We used the transcript and protein expression of the cholesterol efflux protein and LXR target ATP-binding cassette A1 (ABCA1) as a readout of GW-3956-induced LXR activation. Following an initial acute uptake period that was meant to mimic circulating exposure in vivo, we determined that although the induction of transcript expression was similar between NPs, treatment with the redox-sensitive RR1 NPs resulted in a higher level of ABCA1 protein. Our results suggest that NP formulations responsive to cellular cues may be an effective tool for targeted and disease-specific drug release.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Macrófagos/citologia , Animais , Benzoatos/química , Benzilaminas/química , Células Cultivadas , Composição de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores X do Fígado/agonistas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas , Poliésteres/química , Polietilenoglicóis/química , Cultura Primária de Células
5.
Arterioscler Thromb Vasc Biol ; 36(9): e73-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27559146

RESUMO

Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD.


Assuntos
Aterosclerose/terapia , MicroRNAs/uso terapêutico , Nanomedicina/tendências , Nanopartículas , Interferência de RNA , Terapêutica com RNAi/tendências , Animais , Aterosclerose/diagnóstico , Aterosclerose/genética , Difusão de Inovações , Humanos , MicroRNAs/efeitos adversos , MicroRNAs/genética
6.
Proc Natl Acad Sci U S A ; 110(16): 6506-11, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23533277

RESUMO

Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub-100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV-targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.


Assuntos
Anexina A1/farmacologia , Anexina A1/uso terapêutico , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Neutrófilos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peritonite/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Análise de Variância , Animais , Colágeno Tipo IV/metabolismo , Feminino , Citometria de Fluxo , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL
7.
JACC Basic Transl Sci ; 7(10): 985-997, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337926

RESUMO

Patients with established coronary artery disease remain at elevated risk of major adverse cardiac events. The goal of this study was to evaluate the utility of plasminogen activator inhibitor-1-positive platelet-derived extracellular vesicles as a biomarker for major adverse cardiac events and to explore potential underlying mechanisms. Our study suggests these extracellular vesicles as a potential biomarker to identify and a therapeutic target to ameliorate neointimal formation of high-risk patients.

8.
Phys Chem Chem Phys ; 13(38): 17019-22, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21897983

RESUMO

Multiple charge-separation sites have successfully been constructed using supramolecular complexes of multiporphyrinic oligopeptides [P(ZnP)(n), n = 2, 4, 8] with fulleropyrrolidine bearing a pyridine or imidazole coordinating ligand, which are organized by utilizing π-π interaction in addition to the coordination bond.


Assuntos
Fulerenos/química , Oligopeptídeos/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Porfirinas/química , Pirrolidinas/química , Zinco/química , Espectrofotometria Ultravioleta
9.
Cell Death Dis ; 12(1): 8, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414428

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, accounting for the majority of breast cancer-related death. Due to the lack of specific therapeutic targets, chemotherapeutic agents (e.g., paclitaxel) remain the mainstay of systemic treatment, but enrich a subpopulation of cells with tumor-initiating capacity and stem-like characteristics called cancer stem cells (CSCs); thus development of a new and effective strategy for TNBC treatment is an unmet medical need. Cancer nanomedicine has transformed the landscape of cancer drug development, allowing for a high therapeutic index. In this study, we developed a new therapy by co-encapsulating clinically approved drugs, such as paclitaxel, verteporfin, and combretastatin (CA4) in polymer-lipid hybrid nanoparticles (NPs) made of FDA-approved biomaterials. Verteporfin is a drug used in the treatment of macular degeneration and has recently been found to inhibit the Hippo/YAP (Yes-associated protein) pathway, which is known to promote the progression of breast cancer and the development of CSCs. CA4 is a vascular disrupting agent and has been tested in phase II/III of clinical trials. We found that our new three drug-NP not only effectively inhibited TNBC cell viability and cell migration, but also significantly diminished paclitaxel-induced and/or CA4-induced CSC enrichment in TNBC cells, partially through inhibiting the upregulated Hippo/YAP signaling. Combination of verteporfin and CA4 was also more effective in suppressing angiogenesis in an in vivo zebrafish model than single drug alone. The efficacy and application potential of our triple drug-NPs were further assessed by using clinically relevant patient-derived xenograft (PDX) models. Triple drug-NP effectively inhibited the viability of PDX organotypic slide cultures ex vivo and stopped the growth of PDX tumors in vivo. This study developed an approach capable of simultaneously inhibiting bulk cancer cells, CSCs, and angiogenesis.


Assuntos
Bibenzilas/farmacologia , Nanopartículas/uso terapêutico , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Verteporfina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Feminino , Humanos , Camundongos Nus , Células-Tronco Neoplásicas , Ratos , Peixe-Zebra
10.
J Am Chem Soc ; 131(36): 12876-7, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19691314

RESUMO

While the direct electrochemical oxidation of ferrocene encapsulated inside a dimeric molecular capsule is essentially suppressed, a cationic ferrocene derivative binds to the capsule's external surface and acts as an effective electrochemical mediator.


Assuntos
Compostos Ferrosos/química , Dimerização , Eletroquímica , Metalocenos , Modelos Moleculares , Oxirredução
11.
Chemistry ; 15(24): 6025-31, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19402091

RESUMO

The presence of anionic polyelectrolytes enhances the tendency of cationic cyanine dyes to form aggregates in aqueous media. In this work we investigate the interactions between two cyanine dyes, pseudoisocyanine (PIC) and pinacyanol (PIN), with polystyrenesulfonate (PSS) as the key additive to develop J- and H-aggregates. We also take advantage of the binding properties of the cucurbit[7]uril (CB7) host to control formation of these aggregates through its host-guest interactions with the dye molecules. UV/Vis absorption spectroscopic studies clearly demonstrate the PSS-enhanced formation of J-aggregates in the case of PIC and H-aggregates in the case of PIN. Electrostatic interactions between the cyanine dye molecules and the polyelectrolyte chains assist the formation of J- or H-aggregates at very low dye concentrations (ca. 10 microM). Optimum development of dye aggregates was observed at a sulfonate/dye molar ratio of about 3:1. Departures from this stoichiometric ratio seem to perturb the optimal aggregate structure. Furthermore, the presence of CB7 was found to effectively disrupt the interactions responsible for dye aggregation. Thus, CB7 completely disrupts the J-aggregates formed by PIC and the H-aggregates (as well as lower concentrations of J-aggregates) formed by PIN. UV/Vis and emission spectroscopic studies clearly indicate that binding of CB7 to both dye molecules removes them from the aggregate structures. Our spectroscopic data clearly indicate that regulation of the relative molar ratios of dye, CB7 host, and polyelectrolyte sulfonate groups leads to a quantitative control of dye aggregation, yielding variable amounts of PIC J- and PIN H-aggregates in these solutions.

12.
Langmuir ; 25(24): 13763-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19545138

RESUMO

We have investigated the formation of inclusion complexes between the host cucurbit[7]uril (CB7) and three cationic and four neutral ferrocene-containing guests: (ferrocenylmethyl)trimethylammonium (2(+)), butyl(ferrocenylmethyl)-dimethylammonium (3(+)), (ferrocenylmethyl)heptyldimethylammonium (4(+)), hydroxymethylferrocene (5), (((methoxy)-ethoxy)ethoxy)methylferrocene (6), 1,1'-di(hydroxymethyl)ferrocene (7), and 1,1'-di((((methoxy)ethoxy)ethoxy)methyl)ferrocene (8). The formation of highly stable inclusion complexes (K > 10(7) M(-1)) was verified in all cases using NMR spectroscopic techniques. From cyclic voltammetric experiments, we observed that CB7 complexation of the cationic guests (2(+)-4(+)) leads to significant anodic shifts on the ferrocene oxidation half-wave potentials, while the measured potential shifts were smaller in the case of the neutral guests (5-8). Encapsulation of all guests resulted in a substantial decrease of the standard rate constant for heterogeneous electron transfer. However, inclusion complexation of the neutral guests led to quasi-reversible voltammetric behavior, in which the anodic peak potential is more sensitive to scan rate than the corresponding cathodic peak potential, suggesting a minor degree of structural rearrangement in the neutral inclusion complex after oxidation.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Técnicas Eletroquímicas , Compostos Ferrosos/química , Imidazóis/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Metalocenos , Estrutura Molecular , Oxirredução
13.
ACS Nano ; 13(6): 6491-6505, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31125197

RESUMO

The prevention and treatment of cardiovascular diseases (CVD) has largely focused on lowering circulating LDL cholesterol, yet a significant burden of atherosclerotic disease remains even when LDL is low. Recently, microRNAs (miRNAs) have emerged as exciting therapeutic targets for cardiovascular disease. miRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression by degradation or translational inhibition of target mRNAs. A number of miRNAs have been found to modulate all stages of atherosclerosis, particularly those that promote the efflux of excess cholesterol from lipid-laden macrophages in the vessel wall to the liver. However, one of the major challenges of miRNA-based therapy is to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. We sought to develop chitosan nanoparticles (chNPs) that can deliver functional miRNA mimics to macrophages and to determine if these nanoparticles can alter cholesterol efflux and reverse cholesterol transport in vivo. We developed chNPs with a size range of 150-200 nm via the ionic gelation method using tripolyphosphate (TPP) as a cross-linker. In this method, negatively charged miRNAs were encapsulated in the nanoparticles by ionic interactions with polymeric components. We then optimized the efficiency of intracellular delivery of different formulations of chitosan/TPP/miRNA to mouse macrophages. Using a well-defined miRNA with roles in macrophage cholesterol metabolism, we tested whether chNPs could deliver functional miRNAs to macrophages. We find chNPs can transfer exogenous miR-33 to naïve macrophages and reduce the expression of ABCA1, a potent miR-33 target gene, both in vitro and in vivo, confirming that miRNAs delivered via nanoparticles can escape the endosomal system and function in the RISC complex. Because miR-33 and ABCA1 play a key role in regulating the efflux of cholesterol from macrophages, we also confirmed that macrophages treated with miR-33-loaded chNPs exhibited reduced cholesterol efflux to apolipoprotein A1, further confirming functional delivery of the miRNA. In vivo, mice treated with miR33-chNPs showed decreased reverse cholesterol transport (RCT) to the plasma, liver, and feces. In contrast, when efflux-promoting miRNAs were delivered via chNPs, ABCA1 expression and cholesterol efflux into the RCT pathway were improved. Over all, miRNAs can be efficiently delivered to macrophages via nanoparticles, where they can function to regulate ABCA1 expression and cholesterol efflux, suggesting that these miRNA nanoparticles can be used in vivo to target atherosclerotic lesions.


Assuntos
Quitosana/análogos & derivados , Colesterol/metabolismo , Macrófagos Peritoneais/metabolismo , MicroRNAs/genética , Nanopartículas/química , Terapêutica com RNAi/métodos , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Colesterol/sangue , Técnicas de Transferência de Genes , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
14.
Mol Cancer Ther ; 18(10): 1755-1764, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308079

RESUMO

Triple-negative breast cancer (TNBC) accounts disproportionally for the majority of breast cancer-related deaths throughout the world. This is largely attributed to lack of a specific therapy capable of targeting both bulk tumor mass and cancer stem cells (CSC), as well as appropriate animal models to accurately evaluate treatment efficacy for clinical translation. Thus, development of effective and clinically translatable targeted therapies for TNBC is an unmet medical need. We developed a hybrid nanoparticles-based co-delivery platform containing both paclitaxel and verteporfin (PV-NP) to target TNBC patient-derived xenograft (PDX) tumor and CSCs. MRI and IVIS imaging were performed on mice containing PDX tumors to assess tumor vascularity and accumulation of NPs. NF-κB, Wnt, and YAP activities were measured by reporter assays. Mice bearing TNBC PDX tumor were treated with PV-NPs and controls, and tumors progression and CSC subpopulations were analyzed. MRI imaging indicated high vascularization of PDX tumors. IVIS imaging showed accumulation of NPs in PDX tumors. In comparison with control-NPs and free-drug combination, PV-NPs significantly retarded tumor growth of TNBC PDX. PV-NPs simultaneously repressed NF-κB, Wnt, and YAP that have been shown to be crucial for cancer growth, CSC development, and tumorigenesis. In conclusion, NPs containing two clinically used drugs concurrently inhibited NF-κB, Wnt, and YAP pathways and exhibited synergic effects on killing TNBC bulk tumor and CSCs. This combination nanotherapy evaluated with a PDX model may lead to an effective treatment of patients with TNBC.


Assuntos
Nanomedicina , Células-Tronco Neoplásicas/patologia , Pesquisa Translacional Biomédica , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento , Verteporfina/farmacologia , Verteporfina/uso terapêutico
15.
J Am Chem Soc ; 130(50): 17114-9, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19007116

RESUMO

The binding interactions between two cyanine dyes, pseudoisocyanine (PIC) and pinacyanol (PIN), and the cucurbit[n]uril hosts, cucurbit[7]uril (CB7) and cucurbit[6]uril (CB6), were investigated by electronic absorption spectroscopy and DFT computational methods. The CB7 host forms more stable complexes with both dyes than CB6 and the computational studies suggest that the cavity of the smaller host CB6 is not threaded by the dyes. The equilibrium association constants (K) for complexation by CB7 were measured and found to be 2.05 x 10(4) and 3.84 x 10(5) M(-1) for PIC and PIN, respectively, in aqueous media at 23 degrees C. CB7 complexation was found to effectively disrupt the intermolecular forces responsible for the aggregation of both dyes. Thus, CB7 completely disrupts the J-aggregates formed by PIC and the H-aggregates (as well as lower concentrations of J-aggregates) formed by PIN. In both cases a competing guest, 1-aminoadamantane (AD), could be used to adjust the extent of aggregation of the cyanine dye. AD regulates aggregate formation because it forms an extremely stable complex with CB7 (K approximately = 10(12) M(-1)) and exerts a tight control on the CB7 concentration available to interact and bind with the dye.

16.
Chem Commun (Camb) ; (12): 1446-8, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18338051

RESUMO

Ureido pyrimidinedione derivatives with phenyl, 1-naphthyl and 2-naphthyl substituents form stable dimers via quadruple hydrogen bonding, but the 1-naphthyl derivative presents an unexpected tautomer in the solid state.

17.
Mol Oncol ; 12(4): 423-440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316250

RESUMO

Triple-negative breast cancer (TNBC), the most refractory subtype of breast cancer to current treatments, accounts disproportionately for the majority of breast cancer-related deaths. This is largely due to cancer plasticity and the development of cancer stem cells (CSCs). Recently, distinct yet interconvertible mesenchymal-like and epithelial-like states have been revealed in breast CSCs. Thus, strategies capable of simultaneously inhibiting bulk and CSC populations in both mesenchymal and epithelial states have yet to be developed. Wnt/ß-catenin and Hippo/YAP pathways are crucial in tumorigenesis, but importantly also possess tumor suppressor functions in certain contexts. One possibility is that TNBC cells in epithelial or mesenchymal state may differently affect Wnt/ß-catenin and Hippo/YAP signaling and CSC phenotypes. In this report, we found that YAP signaling and CD44high /CD24-/low CSCs were upregulated while Wnt/ß-catenin signaling and ALDH+ CSCs were downregulated in mesenchymal-like TNBC cells, and vice versa in their epithelial-like counterparts. Dual knockdown of YAP and Wnt/ß-catenin, but neither alone, was required for effective suppression of both CD44high /CD24-/low and ALDH+ CSC populations in mesenchymal and epithelial TNBC cells. These observations were confirmed with cultured tumor fragments prepared from patients with TNBC after treatment with Wnt inhibitor ICG-001 and YAP inhibitor simvastatin. In addition, a clinical database showed that decreased gene expression of Wnt and YAP was positively correlated with decreased ALDH and CD44 expression in patients' samples while increased patient survival. Furthermore, tumor growth of TNBC cells in either epithelial or mesenchymal state was retarded, and both CD44high /CD24-/low and ALDH+ CSC subpopulations were diminished in a human xenograft model after dual administration of ICG-001 and simvastatin. Tumorigenicity was also hampered after secondary transplantation. These data suggest a new therapeutic strategy for TNBC via dual Wnt and YAP inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Nus , Pirimidinonas/farmacologia , Sinvastatina/farmacologia , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
18.
Cell Death Dis ; 9(8): 815, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050079

RESUMO

Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer. It causes the majority of breast cancer-related deaths, which has been largely associated with the plasticity of tumor cells and persistence of cancer stem cells (CSCs). Conventional chemotherapeutics enrich CSCs and lead to drug resistance and disease relapse. Development of a strategy capable of inhibiting both bulk and CSC populations is an unmet medical need. Inhibitors against estrogen receptor 1, HDACs, or mTOR have been studied in the treatment of TNBC; however, the results are inconsistent. In this work, we found that patient TNBC samples expressed high levels of mTORC1 and HDAC genes in comparison to luminal breast cancer samples. Furthermore, co-inhibition of mTORC1 and HDAC with rapamycin and valproic acid, but neither alone, reproducibly promoted ESR1 expression in TNBC cells. In combination with tamoxifen (inhibiting ESR1), both S6RP phosphorylation and rapamycin-induced 4E-BP1 upregulation in TNBC bulk cells was inhibited. We further showed that fractionated CSCs expressed higher levels of mTORC1 and HDAC than non-CSCs. As a result, co-inhibition of mTORC1, HDAC, and ESR1 was capable of reducing both bulk and CSC subpopulations as well as the conversion of fractionated non-CSC to CSCs in TNBC cells. These observations were partially recapitulated with the cultured tumor fragments from TNBC patients. Furthermore, co-administration of rapamycin, valproic acid, and tamoxifen retarded tumor growth and reduced CD44high/+/CD24low/- CSCs in a human TNBC xenograft model and hampered tumorigenesis after secondary transplantation. Since the drugs tested are commonly used in clinic, this study provides a new therapeutic strategy and a strong rationale for clinical evaluation of these combinations for the treatment of patients with TNBC.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Histona Desacetilases/química , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima/efeitos dos fármacos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
19.
Chem Commun (Camb) ; (5): 480-2, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17252101

RESUMO

A fluorescent reporter molecule, 2-aminopurine was self-assembled via Watson-Crick base-pairing to a uracil appended fullerene to form a donor-acceptor conjugate; efficient photoinduced charge separation was confirmed by time-resolved emission and transient absorption spectral studies.


Assuntos
2-Aminopurina/química , DNA/química , Uracila/análogos & derivados , Uracila/química , Pareamento de Bases , Transporte de Elétrons , Ligação de Hidrogênio , Fotoquímica , Espectrometria de Fluorescência
20.
J Nanosci Nanotechnol ; 7(4-5): 1455-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17450913

RESUMO

Donor-acceptor dyads of water-soluble Zn porphyrins and C60 bearing either pyridine or imidazole ligand were self assembled via axial coordination in Langmuir and Langmuir-Blodgett (LB) films. Compression and surface potential versus area per molecule isotherms as well as ellipsometry and BAM measurements showed that molecules were aggregated in all Langmuir films before compression. The area per molecule in the absence of aggregation was determined by linear extrapolation of the area at the zero surface pressure to infinite adduct dilution. Comparison of the extrapolated and theoretically calculated areas, being dependent on the composition of the subphase solution, indicated that dyads were oriented with their porphyrin macrocycles in plane of the air-solution interface. Calculated by molecular modeling thickness of the Langmuir films was in accord with that determined by ellipsometry. The Langmuir films were transferred, by using the LB technique, onto different solid substrates for spectroscopic, microscopic, electroanalytical, and photochemical characterization. From the IR spectroscopy investigations it followed that the porphyrin macrocycle of the dyad was either nearly parallel or tilted with respect to the substrate plane. Molecularly modeled pseudo-hexagonal packing and thickness of the LB films were in accord with that imaged by STM and determined by ellipsometry, respectively. The electrochemical redox states of the dyads were established by performing simultaneous cyclic voltammetry and piezoelectric microgravimetry measurements of the LB films on Au-quartz electrodes. Both steady-state and time-resolved emission studies of the zinc porphyrin-fullerene LB films revealed efficient quenching of the singlet-excited Zn porphyrin. Based on the free-energy calculations and dyad orientation in the film, this quenching was attributed to vectorial electron transfer within the dyad.


Assuntos
Eletroquímica/métodos , Fulerenos/química , Nanotecnologia/métodos , Porfirinas/química , Elétrons , Imidazóis/química , Microscopia de Tunelamento , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Pressão , Piridinas/química , Propriedades de Superfície , Termodinâmica , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA