Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(23): 6630-6651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35144515

RESUMO

There is a growing criticism of meat-based products over environment, animal welfare, and public health. Meat lovers are keeping and adapting their habits, while other consumers are increasingly shifting toward meat alternatives considered as healthier and more sustainable options to replace the animal-based products. This transition gives room in the market to plant-, seaweed-, and insect-based meat products alternatives. Nevertheless, these emerging markets are still facing the challenge of consumers' acceptance and the uncertainty in terms of preferences. This paper focuses on in-depth understanding of consumer perception and acceptability of plant-, seaweed-, and insect-based meat products to get insights on their current situation and future implementation. The main factors and motives influencing the consumer perceptions toward meat alternative products are reported. Further, the consumers' motives and drivers to consume alternative products were highlighted. This review, provides a better understanding of motives and drivers of consumers' acceptance to improve the acceptability of meat alternatives, considering product and country origin of the consumers of meat alternative foods.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2036096.


Assuntos
Produtos da Carne , Alga Marinha , Animais , Preferências Alimentares , Carne/análise , Insetos , Verduras , Comportamento do Consumidor
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293120

RESUMO

Proteomics has been widely used to study muscle biology and meat quality traits from different species including beef. Beef proteomics studies allow a better understanding of the biological processes related to meat quality trait determination. This study aimed to decipher by means of two-dimensional electrophoresis (2D-PAGE), mass spectrometry and bioinformatics the changes in post-mortem muscle with a focus on proteins differentially expressed in the Longissimus thoracis (LT) muscle of immunocastrated young heifers and steers. Carcass traits, chemical composition, pH, instrumental color (L*, a*, b*), cooking loss and Warner-Bratzler shear force (WBSF) of meat from F1 Montana-Nellore cattle were also evaluated. Backfat thickness (BFT) and intramuscular fat content (IMF) were 46.8% and 63.6% higher in heifers (p < 0.05), respectively, while evaporation losses (EL) were 10.22% lower compared to steers. No differences (p > 0.05) were observed for tenderness evaluated by WBSF (3, 10, and 17 days post-mortem), pH, and color traits (L*, a* and b*) between the experimental groups. The study revealed several proteins to be differentially expressed proteins in heifers compared steers (p < 0.05). In heifers, proteins involved in nutrient transport (TF, ALB, and MB), energy metabolism (ALDOA, GAPDH, and PKM), and oxidative stress and response to stress (HSPA8 and CA3) were associated with a greater BFT and IMF deposition. The higher expression of these proteins indicated greater oxidative capacity and lower glycolytic activity in the LT muscle of heifers. In steers, there was greater abundance of protein expression related to muscle contraction and proteins of structure (ACTA1, TPM2 and TNNT3), energy metabolism (ENO1, ENO3, PYGM, PGM1 and TPI1) and ATP metabolism (ATP5F1B, PEBP1 and AK1), indicating greater glycogenolysis in LT muscle, suggesting a shift in the glycolytic/oxidative fibers of steers.


Assuntos
Proteínas Musculares , Proteômica , Bovinos , Animais , Feminino , Proteínas Musculares/metabolismo , Carne/análise , Mudanças Depois da Morte , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo
3.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477314

RESUMO

In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.


Assuntos
Antioxidantes/química , Suplementos Nutricionais , Conservantes de Alimentos/química , Frutas/química , Carne , Extratos Vegetais/química , Punica granatum/química , Animais , Humanos
4.
J Sci Food Agric ; 100(6): 2502-2511, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960978

RESUMO

BACKGROUND: The present study aimed to identify relationships between components of intramuscular connective tissue, proportions of the different fiber types, intramuscular fat and sensory tenderness of beef cooked at 55 °C. Accordingly, four muscles differing in their metabolic and contractile properties, as well as in their collagen content and butcher value, were obtained from dairy and beef cattle of several ages and sexes and were then used to create variability. RESULTS: Correlation analyses and/or stepwise regressions were applied on Z-scores to identify the existing and robust associations. Tenderness scores were further categorized into tender, medium and tough classes using unsupervised learning methods. The findings revealed a muscle-dependant role with respect to tenderness of total and insoluble collagen, cross-links, and type IIB + X and IIA muscle fibers. The longissimus thoracis and semitendinosus muscles that, in the present study, were found to be extreme in their tenderness potential were also very different from each other and from the rectus abdominis (RA) and semimembranosus (SM). RA and SM muscles were very similar regarding their relationship for muscle components and tenderness. A relationship between marbling and tenderness was only present when the results were analysed irrespective of all factors of variation of the experimental model relating to muscle and animal type. CONCLUSION: The statistical approaches applied in the present study using Z-scores allowed identification of the robust associations between muscle components and sensory beef tenderness and also identified discriminatory variables of beef tenderness classes. © 2020 Society of Chemical Industry.


Assuntos
Tecido Conjuntivo , Fibras Musculares Esqueléticas , Carne Vermelha/análise , Tecido Adiposo , Animais , Bovinos/classificação , Colágeno/análise , Culinária , Feminino , Humanos , Masculino , Músculo Esquelético , Resistência ao Cisalhamento
5.
J Sci Food Agric ; 99(8): 4129-4141, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30767219

RESUMO

BACKGROUND: This study implemented a holistic approach based on the farm-to-fork data at the four levels of the continuum (farm - slaughterhouse - muscle - meat) to study the inter-individual cluster variability of beef tenderness. For that, 171 young bulls were selected on a large database of 480 animals according to the industrial expectations based on animal and carcass characteristics. The targeted factors were age at slaughter (14; 20 months), carcass weight (370; 470 kg), EUROP conformation (7; 15) and fatness (2.5; 5) scores of the carcasses. Multivariate analyses and unsupervised learning tools were performed. RESULTS: Principal component analysis combined to agglomerative hierarchical clustering allowed ten clusters to be identified that differed (P < 0.0001) for the four targeted factors. The clusters were further different for variables belonging to each level of the continuum. The results indicated an inter-individual cluster variability rising in tenderness in link with the continuum data grouped according to industrial expectations. The associations of the whole variables of the continuum with tenderness were very important, but farm-to-fork continuum-levels dependent. The findings showed that the variables contributing most to the inter-individual cluster variability of tenderness seemed to be more related to the rearing practices, mainly feeding, and their consequences on carcass properties rather than to the muscle characteristics evaluated by enzyme metabolism and connective tissue. CONCLUSION: It seems that considering the continuum data would allow possible trade-off managements of tenderness to identify levers at different levels from the farm-to-meat. © 2019 Society of Chemical Industry.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos/crescimento & desenvolvimento , Carne/análise , Matadouros , Animais , Fazendas/estatística & dados numéricos , Feminino , Humanos , Masculino , Análise de Componente Principal , Paladar
6.
J Sci Food Agric ; 99(3): 1275-1283, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30073653

RESUMO

BACKGROUND: The present study explored the potential use of decision trees on rearing factors (q = 10) and carcass characteristics (q = 12) for the development of prediction model rules of beef tenderness prediction/categorization. Accordingly, 308 young bulls were used by a sensory panel to evaluate the tenderness potential of ribeye steaks grilled at 55 °C. A classification and regression tree method was implemented and allowed the prediction of tenderness using (i) rearing factors, (ii) carcass characteristics or (iii) both. RESULTS: The resultant tree models yielded predictive accuracies of 70.78% (with four rearing factors: concentrate percentage; fattening duration; initial body weight and dry matter intake); 67.21% (with four carcass characteristics: fatness carcass score; carcass weight; dressing percentage and muscle carcass percentage) and 84.41% (with six rearing factors and carcass characteristics) compared to the k-means clustering of tenderness. In the final and robust regression tree, from the 22 attribute information, two carcass characteristics (fatness carcass score and muscle carcass percentage) and four rearing factors (fattening duration; concentrate percentage; dry matter intake and initial body weight) were retained as predictors. The first splitter of the 308 ribeye steaks in accordance with their tenderness scores was fatness carcass score, followed by fattening duration and concentrate percentage. CONCLUSION: The trial in the preset study highlights the importance of thresholding approach for efficiently classifying ribeye steaks in accordance with their tenderness potential. The overall prediction model rule was: IF (fatness carcass score ≥ 2.88) AND (concentrate ≥ 82%) [AND (muscle carcass ≥ 71%)] THEN meat was [very] tender. © 2018 Society of Chemical Industry.


Assuntos
Carne/análise , Animais , Bovinos , Culinária , Árvores de Decisões , Gorduras/análise , Humanos , Masculino , Músculos/química , Controle de Qualidade , Paladar
7.
Crit Rev Food Sci Nutr ; 56(6): 957-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25085261

RESUMO

Since years, serine proteases and their inhibitors were an enigma to meat scientists. They were indeed considered to be extracellular and to play no role in postmortem muscle proteolysis. In the 1990's, we observed that protease inhibitors levels in muscles are a better predictor of meat tenderness than their target enzymes. From a practical point of view, we therefore choose to look for serine protease inhibitors rather than their target enzymes, i.e. serine proteases and the purpose of this report was to overview the findings obtained. Fractionation of a muscle crude extract by gel filtration revealed three major trypsin inhibitory fractions designed as F1 (Mr:50-70 kDa), F2 (Mr:40-60 kDa) and F3 (Mr:10-15kD) which were analyzed separately. Besides antithrombin III, an heparin dependent thrombin inhibitor, F1 and F2 comprised a large set of closely related trypsin inhibitors encoded by at least 8 genes bovSERPINA3-1 to A3-8 and able to inhibit also strongly initiator and effector caspases. They all belong to the serpin superfamily, known to form covalent complexes with their target enzymes, were located within muscle cells and found in all tissues and fluids examined irrespective of the animal species. Potential biological functions in living and postmortem muscle were proposed for all of them. In contrast to F1 and F2 which have been more extensively investigated only preliminary findings were provided for F3. Taken together, these results tend to ascertain the onset of apoptosis in postmortem muscle. However, the exact mechanisms driving the cell towards apoptosis and how apoptosis, an energy dependent process, can be completed postmortem remain still unclear.


Assuntos
Qualidade dos Alimentos , Carne/normas , Inibidores de Serina Proteinase/metabolismo , Animais , Modelos Moleculares , Músculo Esquelético/enzimologia , Conformação Proteica , Inibidores de Serina Proteinase/genética
8.
Food Chem (Oxf) ; 8: 100194, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298469

RESUMO

Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.

9.
J Agric Food Chem ; 72(36): 20153-20170, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213608

RESUMO

Many factors, such as the farming systems and preslaughter rearing practices, can influence the physiological and metabolic functions of poultry with consequent effects on poultry meat quality. In this trial, label-free shotgun proteomics was used to analyze the early post-mortem Pectoralis major muscle proteomes of Ross 308 and Ranger Classic chicken strains raised under two divergent farming systems these being organic and antibiotic-free. The combination of chemometrics using partial-least-square discriminant analysis (PLS-DA) and shotgun proteomics allowed clear discrimination between the different groups. Chicken strains were discriminated by differences in the abundance of 73 and 62 proteins within the antibiotic-free and organic farming systems, respectively. The abundances of 71 and 52 proteins were impacted by the farming system within the Ross 308 and Ranger Classic chicken strains, respectively. The analyses allowed for the proposal of several putative biomarkers of meat authenticity, which were found to be related to muscle structure and energy metabolism pathways. This study is a significant step forward in elucidating the potential of proteomics profiling and chemometrics in chicken meat, which may provide opportunities for the efficient assessment of chicken authenticity.


Assuntos
Biomarcadores , Galinhas , Carne , Músculos Peitorais , Proteoma , Proteômica , Animais , Galinhas/metabolismo , Carne/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Músculos Peitorais/metabolismo , Músculos Peitorais/química , Proteoma/metabolismo , Proteoma/química , Quimiometria , Agricultura Orgânica , Criação de Animais Domésticos/métodos , Antibacterianos
10.
Curr Res Food Sci ; 8: 100757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736908

RESUMO

In the literature, there is a paucity of methods and tools that allow the identification of biomarkers of authenticity to discriminate organic and non-organic chicken meat products. Shotgun proteomics is a powerful tool that allows the investigation of the entire proteome of a muscle and/or meat sample. In this study, a shotgun proteomics approach using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) has been applied for the first time to characterize and identify candidate protein biomarkers of authenticity in post-mortem chicken Pectoralis major muscles produced under organic and non-organic farming systems (antibiotic-free). The proteomics characterization was further performed within two chicken strains, these being Ross 308 and Ranger Classic, which differ in their growth rate. From the candidate protein biomarkers, the bioinformatics enrichment analyses revealed significant differences in the muscle proteome between the two chicken strains, which may be related to their genetic background and rearing conditions. The results further provided novel insights on the potential interconnected pathways at interplay that are associated with the differences as a consequence of farming system of chicken strain, such as muscle contraction and energy metabolism. This study could pave the way to more in-depth investigations in proteomics applications to assess chicken meat authenticity and better understand the impact of farming systems on the chicken muscle and meat quality.

11.
Meat Sci ; 217: 109618, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39096797

RESUMO

Recent advances in "omics" technologies have enabled the identification of new beef quality biomarkers and have also allowed for the early detection of quality defects such as dark-cutting beef, also known as DFD (dark, firm, and dry) beef. However, most of the studies conducted were carried out on a small number of animals and mostly applied gel-based proteomics. The present study proposes for the first time a Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) proteomics approach to characterize and comprehensively quantify the post-mortem muscle proteome of DFD (pH24 ≥ 6.2) and CONTROL (5.4 ≤ pH24 ≤ 5.6) beef samples within the largest database of DFD/CONTROL beef samples to date (26 pairs of the Longissimus thoracis muscle samples of young bulls from Asturiana de los Valles breed, n = 52). The pairwise comparison yielded 35 proteins that significantly differed in their abundances between the DFD and CONTROL samples. Chemometrics methods using both PLS-DA and OPLS-DA revealed 31 and 36 proteins with VIP > 2.0, respectively. The combination of different statistical methods these being Volcano plot, PLS-DA and OPLS-DA allowed us to propose 16 proteins as good candidate biomarkers of DFD beef. These proteins are associated with interconnected biochemical pathways related to energy metabolism (DHRS7B and CYB5R3), binding and signaling (RABGGTA, MIA3, BPIFA2B, CAP2, APOBEC2, UBE2V1, KIR2DL1), muscle contraction, structure and associated proteins (DMD, PFN2), proteolysis, hydrolases, and activity regulation (AGT, C4A, GLB1, CAND2), and calcium homeostasis (ANXA6). These results evidenced the potential of SWATH-MS and chemometrics to accurately identify novel biomarkers for meat quality defects, providing a deeper understanding of the molecular mechanisms underlying dark-cutting beef condition.


Assuntos
Biomarcadores , Músculo Esquelético , Proteômica , Carne Vermelha , Animais , Bovinos , Carne Vermelha/análise , Biomarcadores/análise , Proteômica/métodos , Masculino , Músculo Esquelético/química , Espectrometria de Massas/métodos , Proteoma/análise , Proteínas Musculares/análise
12.
Food Res Int ; 175: 113778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129005

RESUMO

The quality of beef, defined by key attributes such as the intrinsic sensory qualities texture, flavour, and juiciness, is shaped by various intrinsic and extrinsic factors. This study conducted a detailed examination of Nellore beef, focusing on two categories based on ultimate pH (pHu) levels: intermediate (pHu ≥ 5.8) and normal (pHu < 5.6) beef. A comprehensive approach was taken, involving twenty trained assessors who applied the Optimised Descriptive Profile (ODP) method to evaluate grilled striploin steak samples. In parallel, consumer preferences were measured through a hedonic test and a Check-all-that-apply (CATA) task, involving 135 participants. The ODP results revealed that the intermediate pHu samples were juicier (P < 0.05) compared to the normal pHu group. The CATA analysis highlighted differences in both intermediate and normal pHu beef, especially in juiciness, a crucial factor for consumer satisfaction. Notably, variations in deoxymyoglobin content linked to ageing were observed, with higher levels at the 3rd day compared to the 28th day, especially in the intermediate pHu samples (P < 0.05). Moreover, colour-related aspects such as L*, b*, chroma (C*), and oxymyoglobin were significantly influenced (P < 0.05) by both the pHu category and ageing time. Regarding consumer acceptance, the study found no significant difference in perception between the intermediate and normal pHu groups (P > 0.05). These findings revealed the complex interactions between pHu levels, sensory characteristics, and consumer preferences in beef quality, offering valuable insights for both the industry and research community.


Assuntos
Aromatizantes , Paladar , Animais , Humanos , Bovinos , Alimentos , Concentração de Íons de Hidrogênio
13.
Meat Sci ; 219: 109663, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39303345

RESUMO

Ensuring consistent beef eating quality is paramount for meeting consumer demands and sustaining the meat industry. Electrical stimulation (ES) is a post-slaughter intervention used to accelerate post-mortem glycolysis, to avoid cold shortening, to control the tenderization rate of meat through sophisticated physical, chemical and biochemical mechanisms including proteolysis, to improve beef tenderness and to achieve normal pHu that might lead to positive impact on color. This review comprehensively examines the multifaceted effects of ES on beef quality, encompassing factors and settings influencing its efficacy and the underlying biochemical mechanisms revealed using traditional biochemistry methods. It then delves into the molecular pathways modulated by ES, as unveiled by muscle proteomics, aiming to provide a second look and an unprecedented understanding of the underlying biochemical mechanisms through an integrative proteomics analysis of low-voltage ES (LVES) proteomics studies. The proteins changing as a result of ES were gathered in a compendium of 67 proteins, from which 14 were commonly identified across studies. In-depth bioinformatics of this compendium allowed a comprehensive overview of the molecular signatures and interacting biochemical pathways behind electrically stimulated beef muscles. The proteins belong to interconnected molecular pathways including the ATP metabolic process and glycolysis, muscle structure and contraction, heat shock proteins, oxidative stress, proteolysis and apoptosis. Understanding the intricate interplay of molecular pathways behind ES could improve the efficiency of beef production, ensuring consistent meat quality and meeting consumer expectations. The integrative analysis approach performed in this study holds promise for the meat industry's sustainability and competitiveness.

14.
Meat Sci ; 216: 109557, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38852285

RESUMO

This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.


Assuntos
Músculo Esquelético , Proteoma , Carne Vermelha , Animais , Bovinos , Carne Vermelha/análise , Masculino , Concentração de Íons de Hidrogênio , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Proteômica/métodos , Mudanças Depois da Morte
15.
Foods ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981220

RESUMO

Meat consumption has played an important role in human evolution [...].

16.
J Proteomics ; 281: 104893, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37024077

RESUMO

Color of retail fresh beef is the most important quality influencing the consumers' purchase decisions at the point of sale. Discolored fresh beef cuts are either discarded or converted to low-value products, before the microbial quality is compromised, resulting in huge economic loss to meat industry. The interinfluential interactions between myoglobin, small biomolecules, proteome, and cellular components in postmortem skeletal muscles govern the color stability of fresh beef. This review examines the novel applications of high-throughput tools in mass spectrometry and proteomics to elucidate the fundamental basis of these interactions and to explain the underpinning mechanisms of fresh beef color. Advanced proteomic research indicates that a multitude of factors endogenous to skeletal muscles critically influence the biochemistry of myoglobin and color stability in fresh beef. Additionally, this review highlights the potential of muscle proteome components and myoglobin modifications as novel biomarkers for fresh beef color. SIGNIFICANCE: This review highlights the important role of muscle proteome in fresh beef color, which is the major trait impacting consumers' purchase decisions. In recent years, innovative approaches in proteomics have been exploited for an in-depth understanding of the biochemical mechanisms influencing color development and color stability in fresh beef. The review suggests that a wide range of factors, including endogenous skeletal muscle components, can affect myoglobin biochemistry and color stability in beef. Furthermore, the potential use of muscle proteome components and myoglobin post-translational modifications as biomarkers for fresh beef color is discussed. The currently available body of evidence presented in this review can have important implications in meat industry as it provides novel insights into the factors influencing fresh beef color and an up-to-date list of biomarkers that can be used to predict beef color quality.


Assuntos
Mioglobina , Proteômica , Animais , Bovinos , Mioglobina/análise , Proteoma/análise , Carne/análise , Músculo Esquelético/química , Cor
17.
Meat Sci ; 206: 109340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37708621

RESUMO

The color of fresh pork is a crucial quality attribute that significantly influences consumer perception and purchase decisions. This review first explores consumer expectations and discrimination regarding pork color, as well as an overview of the underlying factors that, from farm-to-fork, contribute to its variation. Understanding the husbandry factors, peri- and post-mortem factors and consumer preferences is essential for the pork industry to meet market demands effectively. This review then delves into current knowledge of pork myoglobin chemistry, its modifications and pork discoloration. Pork myoglobin, which has certain peculiarities comparted to other meat species, plays a weak role in determining pork color, and a thorough understanding of the biochemical changes it undergoes is crucial to understand and improve color stability. Furthermore, the growing role of proteomics as a high-throughput approach and its application as a powerful research tool in meat research, mainly to decipher the biochemical mechanisms involved in pork color determination and identify protein biomarkers, are highlighted. Based on an integrative muscle biology approach, the available proteomics studies on pork color have enabled us to provide the first repertoire of pork color biomarkers, to shortlist and propose a list of proteins for evaluation, and to provide valuable insights into the interconnected biochemical processes implicated in pork color determination. By highlighting the contributions of proteomics in elucidating the biochemical mechanisms underlying pork color determination, the knowledge gained hold significant potential for the pork industry to effectively meet market demands, enhance product quality, and ensure consistent and appealing pork color.

18.
Meat Sci ; 202: 109207, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150067

RESUMO

Proteomics plays a key and insightful role in meat research in the post-genomic era. This study aimed to unveil using a shotgun proteomics approach the temporal dynamic changes in early post-mortem proteome of goat Semitendinosus muscle. Therefore, the evolution and comparison of the muscle proteome over three post-mortem times (1, 8, and 24 h) was assessed. The temporal proteomics profiling quantified 748 proteins, from which 174 were differentially abundant (DAPs): n = 55 between 1 h versus 8 h, n = 52 between 8 h versus 24 h, and n = 154 between 1 h versus 24 h. The DAPs belong to myriad interconnected pathways. Binding, transport and calcium homeostasis, as well as muscle contraction and structure, exhibited an equivalent contribution during post-mortem, demonstrating their central role. Catalytic, metabolism and ATP metabolic process, and proteolysis were active pathways from the first hours of animal bleeding. Conversely, oxidative stress, response to hypoxia and cell redox homeostasis along chaperones and heat shock proteins accounted for the large proportion of the biochemical processes, more importantly after 8 h post-mortem. Overall, the conversion of muscle into meat is largely orchestrated by energy production as well as mitochondrial metabolism and homeostasis through calcium and permeability transition regulation. The study further evidenced the role of ribosomal proteins in goat post-mortem muscle, signifying that several proteins experiencing changes during storage, also undergo splicing modifications, which is for instance a mechanism known for mitochondrial proteins. Overall, temporal proteomics profiling of early post-mortem muscle proteome offers an unparalleled view of the sophisticated post-mortem biochemical and proteolytic events associated with goat meat quality determination.


Assuntos
Músculos Isquiossurais , Proteínas Musculares , Animais , Proteínas Musculares/metabolismo , Proteoma , Cabras/metabolismo , Músculos Isquiossurais/metabolismo , Proteômica , Cálcio/metabolismo , Músculos/metabolismo , Carne/análise , Músculo Esquelético/metabolismo , Mudanças Depois da Morte
19.
J Proteomics ; 286: 104953, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390894

RESUMO

Beef sensory quality comprises a suite of traits, each of which manifests its ultimate phenotype through interaction of muscle physiology with environment, both in vivo and post-mortem. Understanding variability in meat quality remains a persistent challenge, but omics studies to uncover biological connections between natural variability in proteome and phenotype could provide validation for exploratory studies and offer new insights. Multivariate analysis of proteome and meat quality data from Longissimus thoracis et lumborum muscle samples taken early post-mortem from 34 Limousin-sired bulls was conducted. Using for the first-time label-free shotgun proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), 85 proteins were found to be related with tenderness, chewiness, stringiness and flavour sensory traits. The putative biomarkers were classified in five interconnected biological pathways; i) muscle contraction, ii) energy metabolism, iii) heat shock proteins, iv) oxidative stress, v) regulation of cellular processes and binding. Among the proteins, PHKA1 and STBD1 correlated with all four traits, as did the GO biological process 'generation of precursor metabolites and energy'. Optimal regression models explained a high level (58-71%) of phenotypic variability with proteomic data for each quality trait. The results of this study propose several regression equations and biomarkers to explain the variability of multiple beef eating quality traits. Thanks to annotation and network analyses, they further suggest protein interactions and mechanisms underpinning the physiological processes regulating these key quality traits. SIGNIFICANCE: The proteomic profiles of animals with divergent quality profiles have been compared in numerous studies; however, a wide range of phenotypic variation is required to better understand the mechanisms underpinning the complex biological pathways correlated with beef quality and protein interactions. We used multivariate regression analyses and bioinformatics to analyse shotgun proteomics data to decipher the molecular signatures involved in beef texture and flavour variations with a focus on multiple quality traits. We developed multiple regression equations to explain beef texture and flavour. Additionally, potential candidate biomarkers correlated with multiple beef quality traits are suggested, which could have utility as indicators of beef overall sensory quality. This study explained the biological process responsible for determining key quality traits such as tenderness, chewiness, stringiness, and flavour in beef, which will provide support for future beef proteomics studies.


Assuntos
Proteoma , Carne Vermelha , Masculino , Bovinos , Animais , Proteoma/metabolismo , Músculo Esquelético/química , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carne/análise , Biomarcadores/análise , Fenótipo , Carne Vermelha/análise
20.
J Proteomics ; 287: 104997, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657717

RESUMO

This study investigated the effect of agro-industrial hazelnut skin by-products supplementation on lamb meat color variation and the changes in the sarcoplasmic muscle proteome during post-mortem storage (0, 4 and 7 days). Gel-based proteomics and bioinformatics approaches were applied to better understand the potential role of feeding strategies in modulating the mechanisms underpinning meat discoloration and post-mortem changes during storage. Therefore, twenty-two Valle del Belice male lambs were randomly assigned to two dietary treatments: control (C), lambs fed with maize-barley diet, and hazelnut skin (H), lambs fed hazelnut skin by-product as maize partial replacer in the concentrate diet. Hazelnut dietary treatment led to better lamb meat color stability as evidenced by the lowest decrease in redness and saturation index values. Proteomics and bioinformatics results revealed changes in the abundance of 41 proteoforms, which were mainly involved in glycolytic processes, responses to oxidative stress, and immune and endocrine system. The proteins allowed revealing interconnected pathways to be behind meat color variation as a consequence of using hazelnut skin by-products to sustainable feed lamb. The proteins can be used as potential predictors of lamb meat color variation. Accordingly, the regression equations developed in this paper revealed triosephosphate isomerase (TPI1) as a reliable candidate biomarker of color stability in lamb meat. SIGNIFICANCE: The use of agro-industrial by-products in animal feeding can be a potential sustainable strategy to reduce the environmental impacts of the food production chain and consequently improve animal welfare and product quality. The inclusion of hazelnut skin by-products in the animal's diet, due to the high concentration of polyphenols, represents an effective strategy to improve the oxidative stability of meat, with significant implications on color. The use of proteomics combined with bioinformatics on the sarcoplasmic proteome is a powerful approach to decipher the underlying mechanism. Accordingly, this approach allowed in this trial a deeper understanding of the molecular mechanisms involved in the post-mortem processes through the discovery of several biological pathways linked with lamb meat color variation. Glycolysis, followed by responses to oxidative stress, and other proteins involved in the immune and endocrine system were found as the major interconnected pathways that could act as potential predictors of lamb meat color stability. Candidate proteins biomarkers were further revealed in this study to be related with multiple meat color traits.


Assuntos
Corylus , Proteoma , Masculino , Ovinos , Animais , Músculos , Carneiro Doméstico , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA