Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2585-2594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37709980

RESUMO

Speciation analysis plays a key role in understanding the biological activity and toxicity of an element. So far, classical speciation analysis focused only on the dissolved fraction of an elemental species, whereas nanoparticle forms of analytes are being widely found in consumer and industrial products. A significant contributor to human exposure to nanoparticles is through food into which nanoparticles can be incorporated from endogenous sources or they may be formed naturally in the living organisms. Nanoparticles often undergo changes in the food matrices and upon consumption, in the gastrointestinal tract, which present a significant challenge to their characterisation. Therefore, a combination of both classical and nanoparticle speciation analytical techniques is needed for the characterisation of both dissolved and particulate forms of the chemical species. This article presents and discusses the current trends in analysis of nanoparticle behaviour in the gastrointestinal tract and formation and characterisation of biogenic nanoparticles.


Assuntos
Nanopartículas , Oligoelementos , Humanos , Oligoelementos/análise , Nanopartículas/química
2.
Environ Sci Technol ; 55(10): 6584-6593, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33905233

RESUMO

Soot is typically the dominant component of the nonvolatile particles emitted from internal combustion engines. Although soot is primarily composed of carbon, its chemistry, toxicity, and oxidation rates may be strongly influenced by internally mixed inorganic metal compounds (ash). Here, we describe the detailed microstructure of ash internally mixed with soot from four marine engines and one aviation engine. The engines were operated on different fuels and lubrication oils; the fuels included four residual fuels and five distillate fuels such as diesel, natural gas, and Jet A-1. Using annular-dark-field scanning transmission electron microscopy (ADF-STEM), we observed that ash may occur either as distinct nodules on the soot particle (decorated) or as continuous streaks (painted). Both structures may exist within a single particle. Decorated soot was observed for both distillate and residual fuels and contained elements associated with either the fuel (V, Ni, Fe, S) or with the lubrication oil (Zn, Ca, P). Painted soot was observed only for residual-fuel soot, and only contained elements associated with the fuel. Additional composition measurements by inductively coupled plasma mass spectrometry (ICP-MS) of filter samples indicated that the internal mixing trends of ash with soot were consistent with the overall ash-to-carbon ratio of the sampled combustion aerosols. Painted soot may form when molten ash coagulates with or condenses onto soot within engines.


Assuntos
Aviação , Fuligem , Aerossóis , Carbono/análise , Emissões de Veículos/análise
3.
Anal Bioanal Chem ; 412(18): 4363-4373, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32382966

RESUMO

With recently legislated maximum levels of inorganic arsenic (iAs) in white and brown rice in Canada, the regulatory bodies are evaluating the need for regulation of As levels in infant food products. Rice is a major part of infants' diet, and therefore, the presence of As in this staple food causes concerns. So far, the scientific community was lacking suitable certified reference material (CRM) which could be used to assess the accuracy of developed analytical methods for As speciation in infants' food products. As a result, we have developed BARI-1, a baby cereal coarse rice flour reference material which was certified for total arsenic (0.248 ± 0.018 mg kg-1), cadmium (0.0134 ± 0.0014 mg kg-1), mercury (0.0026 ± 0.0003 mg kg-1), lead (0.0064 ± 0.0016 mg kg-1), inorganic As (0.113 ± 0.016 mg kg-1) and dimethylarsinic acid (DMA) (0.115 ± 0.010 mg kg-1), and reference value for monomethylarsonic acid (MMA) (0.0045 ± 0.0008 mg kg-1) was reported. We also observed trace amounts of an unknown As compound, with chromatographic retention time close to DMA. Participating laboratories were allowed to use their in-house-validated extraction and/or digestion methods, and the detection of total metals was done by ICP-MS whereas HPLC-ICP-MS was used for As speciation. Despite the diversity in sample preparation and quantitation methods, reported values were in good agreement. For iAs measurement, the comparison between hydride generation ICP-MS and HPLC-ICP-MS found iAs overestimation with the former method, possibly due to interference from DMA. The certification was accomplished with a CRM rapid response approach in collaborative, focused effort completing the CRM development in few months instead of the typical multiyear project. This approach allowed to respond to measurement needs in a timely fashion. Graphical abstract.


Assuntos
Arsênio/análise , Arsenicais/análise , Ácido Cacodílico/análise , Contaminação de Alimentos/análise , Alimentos Infantis/análise , Oryza/química , Cromatografia Líquida de Alta Pressão/métodos , Grão Comestível/química , Farinha/análise , Análise de Alimentos/métodos , Humanos , Lactente , Espectrometria de Massas/métodos
4.
Anal Bioanal Chem ; 411(19): 4277-4292, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30762098

RESUMO

The need to assess the human and environmental risks of nanoparticles (NPs) has prompted an adaptation of existing techniques and the development of new ones. Nanoparticle analysis poses a great challenge as the analytical information has to consider both physical (e.g. size and shape) and chemical (e.g. elemental composition) state of the analyte. Furthermore, one has to contemplate the transformation of NPs during the sample preparation and provide sufficient information about the new species derived from such alteration. Traditional techniques commonly used for NP analysis such as microscopy and light scattering are still frequently used for NPs in simple matrices; however, they have limitations in the analysis of complex environmental and biological samples. On the other hand, recent improvements in data acquisition frequencies and reduction of settling time of ICP-MS brought inorganic mass spectrometry into the forefront of NPs analysis. However, with the increasing demand of analytical information related to NPs, emerging techniques such as enhanced darkfield hyperspectral imaging, nano-SIMS and mass cytometry are in their way to fill the gaps. This trend review presents and discusses the state-of-the-art analytical techniques and sample preparation methods for NP analysis in biological matrices. Graphical abstract ᅟ.


Assuntos
Nanopartículas , Humanos , Espectrometria de Massas/métodos
5.
Anal Bioanal Chem ; 407(3): 973-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318461

RESUMO

Mercury (Hg) is a global pollutant which occurs in different species, with methylmercury (MeHg) being the critical compound due to its neurotoxicity and bioaccumulation through the food chain. Methods for trace speciation of MeHg are therefore needed for a vast range of sample matrices, such as biological tissues, fluids, soils or sediments. We have previously developed an ultra-trace speciation method for methylmercury in water, based on a preconcentration HPLC cold vapour atomic fluorescence spectrometry (HPLC-CV-AFS) method. The focus of this work is mercury speciation in a variety of sample matrices to assess the versatility of the method. Certified reference materials were used where possible, and samples were spiked where reference materials were not available, e.g. human urine. Solid samples were submitted for commonly used digestion or extraction processes to obtain a liquid sample for injection into the analytical system. For MeHg in sediment samples, an extraction procedure was adapted to accommodate MeHg separation from high amounts of Hg(2+) to avoid an overload of the column. The recovery for MeHg determination was found to be in the range of 88-104% in fish reference materials (DOLT-2, DOLT-4, DORM-3), lobster (TORT-2), seaweed (IAEA-140/TM), sediments (ERM(®)-CC580) and spiked urine and has been proven to be robust, reliable, virtually matrix-independent and relatively cost-effective. Applications in the ultra-trace concentration range are possible using the preconcentration up to 200 mL, while for higher MeHg-containing samples, lower volumes can be applied. A comparison was carried out between species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICP-MS) as the gold standard and HPLC-CV-AFS for biological tissues (liver, kidney and muscle of pilot whales), showing a slope of 1.008 and R (2) = 0.97, which indicates that the HPLC-CV-AFS method achieves well-correlated results for MeHg in biological tissues.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sedimentos Geológicos/análise , Compostos de Metilmercúrio/análise , Espectrometria de Fluorescência/métodos , Animais , Organismos Aquáticos , Cromatografia Líquida de Alta Pressão/instrumentação , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Compostos de Metilmercúrio/urina , Sistemas On-Line , Técnica de Diluição de Radioisótopos , Alga Marinha/química , Baleias
6.
Chemosphere ; 350: 141032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151063

RESUMO

The ability of an organism to biomethylate toxic inorganic arsenic (As) determines both, the amount of As available for uptake higher up the food chain and the toxicity of bioavailable As. An exposure study was conducted to determine ability of farmed crickets to metabolize dietary arsenate. Crickets were exposed to 1.3 ± 0.1, 5.1 ± 2.5 and 36.3 ± 5.6 mg kg-1 dietary arsenate and quantitation of total As showed retention of 0.416 ± 0.003, 1.3 ± 0.04 and 2.46 ± 0.09 mg kg-1, respectively. Speciation analysis revealed that crickets have well developed ability to biomethylate dietary arsenate and the most abundant methylated As compound was DMA followed by MMA, TMAO and an unknown compound. Arsenobetaine, although present in all feed, control and As-rich, was measured only in the control crickets. To assess the bio-accessibility of the As species, crickets were subjected to simulated gastrointestinal digestion. The results showed that majority of As was extracted in saliva, followed by gastric and intestinal juice, which mass fraction was equal to residue. Over 78% of total As was shown to be bio-accessible with methylated species reaching 100% and iAs over 79% bio-accessibility. Additionally, arsenite and arsenate have shown different distributions between sequential leachate solutions. Bioaccumulation of As was observed in the studied crickets although it does not seem to occur to the same extent at higher exposure levels.


Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Críquete , Humanos , Arseniatos/toxicidade , Arsênio/análise , Arsenicais/análise , Metilação
7.
Sci Total Environ ; 946: 173816, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852872

RESUMO

Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 µg As/kg wet weight and between 0.6 and 27.6 µg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.

8.
ACS Omega ; 7(47): 42783-42792, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467951

RESUMO

Cannabis vaping involves the vaporization of a cannabis vaping liquid or solid via a vaping accessory such as a vape pen constructed of various metals or other parts. An increasing number of reports advocate for expansion of the testing and regulation of metal contaminants in cannabis vape liquids beyond the metals typically tested such as arsenic, cadmium, mercury, and lead to reflect the possibility of consumers' exposure to other metal contaminants. Metal contaminants may originate not only from the cannabis itself but also from the vape devices in which the cannabis vape liquid is packaged. However, metal analyses of cannabis vape liquids sampled from cannabis vaping devices are challenged by poor precision and reproducibility. Herein, we present data on the metal content of 12 metals in 20 legal and 21 illegal cannabis vape liquids. The lead mass fraction in several illegal samples reached up to 50 µg g-1. High levels of nickel (max 677 µg g-1) and zinc (max 426 µg g-1) were found in illegal samples, whereas the highest copper content (485 µg g-1) was measured in legal samples. Significant differences in metal mass fractions were observed in the legal cannabis vape liquid taken from two identical devices, even though the liquid was from the same lot of the same cannabis product. Metal particles in the vape liquids were observed by scanning electron microscopy, and laser ablation inductively coupled plasma mass spectrometry confirmed the presence of copper-, zinc-, lead-, and manganese-bearing particles, metals that are in common alloys that may be used to make vape devices. Colocalized particles containing aluminum, silica, and sodium were also detected. These results suggest that metal particles could be a contributing factor to poor measurement precision and for the first time, to the best of our knowledge, provide evidence of metal particles in cannabis vape liquids contained in unused cannabis vape pens.

9.
Environ Pollut ; 266(Pt 2): 115190, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688077

RESUMO

With the constant quest for new sources of superfoods to supplement the largely nutrient deficient diet of the modern society, sea cucumbers are gaining increasing popularity. Three species of sea cucumbers, Cucumaria frondosa, Apostichopus californicus and Apostichopusjaponicus were collected from three geographical regions, Atlantic and Pacific coast of Canada and Yellow sea/ East China sea in China, respectively. These organisms were sectioned into parts (body wall, tentacles, internal organ, skin and muscle) and analysed for total arsenic (As) by inductively coupled plasma mass spectrometry (ICP-MS) and As species by high-performance liquid chromatography (HPLC) coupled to ICP-MS. Normal and reversed sequential extractions were optimised to address As distribution between lipids (polar and non-polar) and water-extractable fractions. Two extraction methods for water-extractable As were compared in terms of the number and the amount of extracted species. The results revealed that total As concentration and As species distribution varies significantly between sea cucumbers species. Total As in studied body parts ranged between 2.8 ± 0.52 and 7.9 ± 1.2 mg kg-1, with an exception of the muscle tissue of A. californicus, where it reached to 36 ± 3.5 mg kg-1. Arsenobetaine (AsB) was the most abundant As species in A. californicus and A.japonicus, however, inorganic As represented over 70% of total recovered As in the body parts of C. frondosa. Arsenosugars-328 and 482 were found in all studied body parts whereas arsenosugar-408 was only found in the skin of A. californicus. This is the first time that such a variation in As species distribution between sea cucumber species has been shown.


Assuntos
Arsênio/análise , Pepinos-do-Mar , Animais , Canadá , China , Cromatografia Líquida de Alta Pressão , Água
10.
Anal Chim Acta ; 1064: 40-46, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982516

RESUMO

A novel isotope dilution method for the analysis of inorganic chloride in fuel oil matrix is presented. The samples were diluted by isopropyl alcohol:toluene, mixed with 37Cl- internal standard and reacted with triethyloxonium tetrafluoroborate at room temperature. This reagent promoted conversion of Cl- into stable ethyl chloride (EtCl) which was selectively detected by headspace GC-MS/MS with no matrix effects. A limit of detection of 0.2 mg kg-1 Cl- was obtained in fuel oil. The method was tested on the NIST SRM 1634c (trace elements in residual fuel oil) and validated through a series of robustness tests. Over 18 days, the variation in the signal response was less than 10% and the RSD for quantitative isotope dilution results was below 3%. Overall, the method is fast, simple and allows robust quantitation of inorganic chloride directly in the non-aqueous media.

11.
Sci Rep ; 8(1): 3675, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487292

RESUMO

Occupational exposure of chloralkali workers to highly concentrated mercury (Hg) vapour has been linked to an increased risk of renal dysfunction and behavioural changes. It is generally believed that these workers are exposed to elemental Hg, which is used in abundance during the production process however, the lack in analytical techniques that would allow for identification of gaseous Hg species poses a challenge, which needs to be addressed in order to reach a consensus. Here, we present the results from simulated exposure studies, which provide sound evidence of higher adsorption rate of HgCl2 than Hg0 and its irreversible bonding on the surface of hair. We found that chloralkali workers were exposed to HgCl2, which accumulated in extremely high concentrations on the hair surface, more than 1,000 times higher than expected from unexposed subjects and was positively correlated with Hg levels in the finger- and toenails.


Assuntos
Cabelo/química , Mercúrio/análise , Humanos , Masculino , Pessoa de Meia-Idade , Unhas/química , Exposição Ocupacional/efeitos adversos
12.
Sci Total Environ ; 545-546: 407-13, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26748005

RESUMO

The bioaccumulation of metals was investigated by analysis of liver, kidney, muscle and brain tissue of a pod of 21 long-finned pilot whales (Globicephala melas) of all ages stranded in Scotland, UK. The results are the first to report cadmium (Cd) passage through the blood-brain barrier of pilot whales and provide a comprehensive study of the long-term (up to 35 years) mammalian exposure to the environmental pollutants. Additionally, linear accumulation of mercury (Hg) was observed in all studied tissues, whereas for Cd this was only observed in the liver. Total Hg concentration above the upper neurochemical threshold was found in the sub-adult and adult brains and methylmercury (MeHg) of 2.2mg/kg was found in the brain of one individual. Inter-elemental analysis showed significant positive correlations of Hg with selenium (Se) and Cd with Se in all studied tissues. Furthermore, differences in the elemental concentrations in the liver and brain tissues were found between juvenile, sub-adult and adult groups. The highest concentrations of manganese, iron, zinc, Se, Hg and MeHg were noted in the livers, whereas Cd predominantly accumulated in the kidneys. High concentrations of Hg and Cd in the tissues of pilot whales presented in this study reflect ever increasing toxic stress on marine mammals.


Assuntos
Encéfalo/metabolismo , Cádmio/metabolismo , Monitoramento Ambiental , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Baleias Piloto/metabolismo , Animais , Escócia
13.
Sci Rep ; 6: 34361, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27678068

RESUMO

To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 µm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA