Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252999

RESUMO

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Assuntos
Miofibrilas , Troponina T , Humanos , Miofibrilas/genética , Miofibrilas/patologia , Troponina T/genética , Troponina T/química , Actinas/genética , Mutação , Citoesqueleto de Actina/genética , Miosinas , Cálcio
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753506

RESUMO

Every heartbeat relies on cyclical interactions between myosin thick and actin thin filaments orchestrated by rising and falling Ca2+ levels. Thin filaments are comprised of two actin strands, each harboring equally separated troponin complexes, which bind Ca2+ to move tropomyosin cables away from the myosin binding sites and, thus, activate systolic contraction. Recently, structures of thin filaments obtained at low (pCa ∼9) or high (pCa ∼3) Ca2+ levels revealed the transition between the Ca2+-free and Ca2+-bound states. However, in working cardiac muscle, Ca2+ levels fluctuate at intermediate values between pCa ∼6 and pCa ∼7. The structure of the thin filament at physiological Ca2+ levels is unknown. We used cryoelectron microscopy and statistical analysis to reveal the structure of the cardiac thin filament at systolic pCa = 5.8. We show that the two strands of the thin filament consist of a mixture of regulatory units, which are composed of Ca2+-free, Ca2+-bound, or mixed (e.g., Ca2+ free on one side and Ca2+ bound on the other side) troponin complexes. We traced troponin complex conformations along and across individual thin filaments to directly determine the structural composition of the cardiac native thin filament at systolic Ca2+ levels. We demonstrate that the two thin filament strands are activated stochastically with short-range cooperativity evident only on one of the two strands. Our findings suggest a mechanism by which cardiac muscle is regulated by narrow range Ca2+ fluctuations.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cálcio/metabolismo , Miocárdio/química , Miosinas/química , Sístole , Troponina/química , Animais , Cálcio/análise , Microscopia Crioeletrônica , Conformação Proteica , Suínos
3.
Subcell Biochem ; 99: 421-470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151385

RESUMO

Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina/química , Actinas/metabolismo , Actomiosina/análise , Actomiosina/química , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas/química , Isoformas de Proteínas/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(26): 6782-6787, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607071

RESUMO

Muscle contraction relies on the interaction of myosin motors with F-actin, which is regulated through a translocation of tropomyosin by the troponin complex in response to Ca2+ The current model of muscle regulation holds that at relaxing (low-Ca2+) conditions tropomyosin blocks myosin binding sites on F-actin, whereas at activating (high-Ca2+) conditions tropomyosin translocation only partially exposes myosin binding sites on F-actin so that binding of rigor myosin is required to fully activate the thin filament (TF). Here we used a single-particle approach to helical reconstruction of frozen hydrated native cardiac TFs under relaxing and activating conditions to reveal the azimuthal movement of the tropomyosin on the surface of the native cardiac TF upon Ca2+ activation. We demonstrate that at either relaxing or activating conditions tropomyosin is not constrained in one structural state, but rather is distributed between three structural positions on the surface of the TF. We show that two of these tropomyosin positions restrain actomyosin interactions, whereas in the third position, which is significantly enhanced at high Ca2+, tropomyosin does not block myosin binding sites on F-actin. Our data provide a structural framework for the enhanced activation of the cardiac TF over the skeletal TF by Ca2+ and lead to a mechanistic model for the regulation of the cardiac TF.


Assuntos
Actinas/química , Cálcio/química , Miocárdio/química , Fibras de Estresse/química , Tropomiosina/química , Actinas/metabolismo , Animais , Cálcio/metabolismo , Miocárdio/metabolismo , Fibras de Estresse/metabolismo , Suínos , Tropomiosina/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(6): 1558-63, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26831109

RESUMO

Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Hidrólise , Modelos Moleculares , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Contração Muscular/efeitos dos fármacos , Subfragmentos de Miosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Coelhos , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Relação Estrutura-Atividade , Sus scrofa
6.
J Biol Chem ; 292(26): 10899-10911, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476887

RESUMO

Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from Chlamydomonas (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in Chlamydomonas, suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3-O-(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.


Assuntos
Chlamydomonas reinhardtii/química , Complexos Multiproteicos/química , Proteínas de Plantas/química , Multimerização Proteica , Septinas/química , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Septinas/genética , Septinas/metabolismo
7.
BMC Struct Biol ; 18(1): 12, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219048

RESUMO

BACKGROUND: Dramatic progress has recently been made in cryo-electron microscopy technologies, which now make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However, the need persists for fitting and refinement approaches that address those cases that require modeling assistance. METHODS: In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed for cases where extra containment of parts of the structure is helpful, such as in regions where the density map is poorly defined. Also, we propose a simple stopping criterion that estimates the probable onset of overfitting during the simulation. RESULTS: The new set of algorithms produce more accurate fitting and refinement results, and yield a faster rate of convergence of the trajectory toward the fitted conformation. The latter is also more reliable due to the overfitting warning provided to the user. CONCLUSIONS: The algorithms described here were implemented in the new Damped-Dynamics Flexible Fitting simulation tool "DDforge" in the Situs package.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/química , Algoritmos , Modelos Moleculares , Conformação Proteica
8.
Proc Natl Acad Sci U S A ; 108(51): 20568-72, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22158895

RESUMO

Cofilin/ADF proteins play key roles in the dynamics of actin, one of the most abundant and highly conserved eukaryotic proteins. We used cryoelectron microscopy to generate a 9-Å resolution three-dimensional reconstruction of cofilin-decorated actin filaments, the highest resolution achieved for a complex of F-actin with an actin-binding protein. We show that the cofilin-induced change in the filament twist is due to a unique conformation of the actin molecule unrelated to any previously observed state. The changes between the actin protomer in naked F-actin and in the actin-cofilin filament are greater than the conformational changes between G- and F-actin. Our results show the structural plasticity of actin, suggest that other actin-binding proteins may also induce large but different conformational changes, and show that F-actin cannot be described by a single molecular model.


Assuntos
Fatores de Despolimerização de Actina/química , Actinas/química , Cofilina 2/química , Citoesqueleto/química , Polímeros/química , Microscopia Crioeletrônica/métodos , Biblioteca Gênica , Humanos , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína
9.
J Mol Biol ; 436(6): 168498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
10.
J Bacteriol ; 195(7): 1360-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23175654

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assembled by an outer membrane usher protein that catalyzes subunit polymerization via donor strand complementation, in which the N terminus of each incoming pilin subunit fits into a hydrophobic groove in the terminal subunit, completing a ß-sheet in the Ig fold. Here we determined a crystal structure of the CS1 major pilin subunit, CooA, to a 1.6-Å resolution. CooA is a globular protein with an Ig fold and is similar in structure to the CFA/I major pilin CfaB. We determined three distinct negative-stain electron microscopic reconstructions of the CS1 pilus and generated pseudoatomic-resolution pilus structures using the CooA crystal structure. CS1 pili adopt multiple structural states with differences in subunit orientations and packing. We propose that the structural perturbations are accommodated by flexibility in the N-terminal donor strand of CooA and by plasticity in interactions between exposed flexible loops on adjacent subunits. Our results suggest that CS1 and other pili of this class are extensible filaments that can be stretched in response to mechanical stress encountered during colonization.


Assuntos
Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Sequência de Aminoácidos , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular
11.
Proc Natl Acad Sci U S A ; 107(10): 4590-5, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20176965

RESUMO

Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Vibrio cholerae/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Cromossomos Bacterianos/genética , DNA/química , Proteínas de Ligação a DNA/química , Hidrólise , Cinética , Microscopia Eletrônica , Modelos Moleculares , Plasmídeos/genética , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vibrio cholerae/genética
12.
PNAS Nexus ; 2(1): pgac298, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712934

RESUMO

Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.

13.
Nat Struct Mol Biol ; 14(6): 468-74, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17515904

RESUMO

The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.


Assuntos
Proteína BRCA2/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Nucleoproteínas/metabolismo , Rad51 Recombinase/metabolismo , Proteínas Reguladoras de Apoptose , Proteína BRCA2/genética , Cromatografia em Gel , Reparo do DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Nucleoproteínas/ultraestrutura , Ligação Proteica , Rad51 Recombinase/genética
14.
Nat Struct Mol Biol ; 14(10): 921-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17873883

RESUMO

Bacterial ParM is a homolog of eukaryotic actin and is involved in moving plasmids so that they segregate properly during cell division. Using cryo-EM and three-dimensional reconstruction, we show that ParM filaments have a different structure from F-actin, with very different subunit-subunit interfaces. These interfaces result in the helical handedness of the ParM filament being opposite to that of F-actin. Like F-actin, ParM filaments have a variable twist, and we show that this involves domain-domain rotations within the ParM subunit. The present results yield new insights into polymorphisms within F-actin, as well as the evolution of polymer families.


Assuntos
Actinas/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Actinas/genética , Actinas/metabolismo , Microscopia Crioeletrônica , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
15.
Protein Sci ; 31(7): e4358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762710

RESUMO

A transient increase in Ca2+ concentration in sarcomeres is essential for their proper function. Ca2+ drives striated muscle contraction via binding to the troponin complex of the thin filament to activate its interaction with the myosin thick filament. In addition to the troponin complex, the myosin essential light chain and myosin-binding protein C were also found to be Ca2+ sensitive. However, the effects of Ca2+ on the function of the tropomodulin family proteins involved in regulating thin filament formation have not yet been studied. Leiomodin, a member of the tropomodulin family, is an actin nucleator and thin filament elongator. Using pyrene-actin polymerization assay and transmission electron microscopy, we show that the actin nucleation activity of leiomodin is attenuated by Ca2+ . Using circular dichroism and nuclear magnetic resonance spectroscopy, we demonstrate that the mostly disordered, negatively charged region of leiomodin located between its first two actin-binding sites binds Ca2+ . We propose that Ca2+ binding to leiomodin results in the attenuation of its nucleation activity. Our data provide further evidence regarding the role of Ca2+ as an ultimate regulator of the ensemble of sarcomeric proteins essential for muscle function. SUMMARY STATEMENT: Ca2+ fluctuations in striated muscle sarcomeres modulate contractile activity via binding to several distinct families of sarcomeric proteins. The effects of Ca2+ on the activity of leiomodin-an actin nucleator and thin filament length regulator-have remained unknown. In this study, we demonstrate that Ca2+ binds directly to leiomodin and attenuates its actin nucleating activity. Our data emphasizes the ultimate role of Ca2+ in the regulation of the sarcomeric protein interactions.


Assuntos
Actinas , Tropomodulina , Citoesqueleto de Actina , Contração Muscular , Troponina
16.
J Mol Biol ; 434(24): 167879, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36370805

RESUMO

Cardiac myosin binding protein C (cMyBP-C) modulates cardiac contraction via direct interactions with cardiac thick (myosin) and thin (actin) filaments (cTFs). While its C-terminal domains (e.g. C8-C10) anchor cMyBP-C to the backbone of the thick filament, its N-terminal domains (NTDs) (e.g. C0, C1, M, and C2) bind to both myosin and actin to accomplish its dual roles of inhibiting thick filaments and activating cTFs. While the positions of C0, C1 and C2 on cTF have been reported, the binding site of the M-domain on the surface of the cTF is unknown. Here, we used cryo-EM to reveal that the M-domain interacts with actin via helix 3 of its ordered tri-helix bundle region, while the unstructured part of the M-domain does not maintain extensive interactions with actin. We combined the recently obtained structure of the cTF with the positions of all the four NTDs on its surface to propose a complete model of the NTD binding to the cTF. The model predicts that the interactions of the NTDs with the cTF depend on the activation state of the cTF. At the peak of systole, when bound to the extensively activated cTF, NTDs would inhibit actomyosin interactions. In contrast, at falling Ca2+ levels, NTDs would not compete with the myosin heads for binding to the cTF, but would rather promote formation of active cross-bridges at the adjacent regulatory units located at the opposite cTF strand. Our structural data provides a testable model of the cTF regulation by the cMyBP-C.


Assuntos
Actinas , Proteínas de Transporte , Domínios e Motivos de Interação entre Proteínas , Actinas/química , Proteínas de Transporte/química , Microscopia Crioeletrônica , Ligação Proteica , Humanos
17.
J Extracell Vesicles ; 11(2): e12184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35119778

RESUMO

The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.


Assuntos
Vesículas Extracelulares , Proteômica , Vesículas Extracelulares/química , Humanos , Masculino , Espectrometria de Massas , Próstata , Proteômica/métodos , Ultracentrifugação
18.
Nucleic Acids Res ; 37(1): 158-71, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19033358

RESUMO

Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 A, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 A pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , DNA/metabolismo , DNA Helicases , Enzimas Reparadoras do DNA , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Rad51 Recombinase/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 105(5): 1494-8, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18234857

RESUMO

Many actin binding proteins have a modular architecture, and calponin-homology (CH) domains are one such structurally conserved module found in numerous proteins that interact with F-actin. The manner in which CH-domains bind F-actin has been controversial. Using cryo-EM and a single-particle approach to helical reconstruction, we have generated 12-A-resolution maps of F-actin alone and F-actin decorated with a fragment of human fimbrin (L-plastin) containing tandem CH-domains. The high resolution allows an unambiguous fit of the crystal structure of fimbrin into the map. The interaction between fimbrin ABD2 (actin binding domain 2) and F-actin is different from any interaction previously observed or proposed for tandem CH-domain proteins, showing that the structural conservation of the CH-domains does not lead to a conserved mode of interaction with F-actin. Both the stapling of adjacent actin protomers and the additional closure of the nucleotide binding cleft in F-actin when the fimbrin fragment binds may explain how fimbrin can stabilize actin filaments. A mechanism is proposed where ABD1 of fimbrin becomes activated for binding a second actin filament after ABD2 is bound to a first filament, and this can explain how mutations of residues buried in the interface between ABD2 and ABD1 can rescue temperature-sensitive defects in actin.


Assuntos
Actinas/química , Glicoproteínas de Membrana/química , Proteínas dos Microfilamentos/química , Fosfoproteínas/química , Microscopia Crioeletrônica , Humanos , Conformação Proteica , Estrutura Terciária de Proteína
20.
J Mol Biol ; 433(19): 167178, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34329643

RESUMO

Cardiac muscle contraction depends on interactions between thick (myosin) and thin (actin) filaments (TFs). TFs are regulated by intracellular Ca2+ levels. Under activating conditions Ca2+ binds to the troponin complex and displaces tropomyosin from myosin binding sites on the TF surface to allow actomyosin interactions. Recent studies have shown that in addition to Ca2+, the first four N-terminal domains (NTDs) of cardiac myosin binding protein C (cMyBP-C) (e.g. C0, C1, M and C2), are potent modulators of the TF activity, but the mechanism of their collective action is poorly understood. Previously, we showed that C1 activates the TF at low Ca2+ and C0 stabilizes binding of C1 to the TF, but the ability of C2 to bind and/or affect the TF remains unknown. Here we obtained 7.5 Å resolution cryo-EM reconstruction of C2-decorated actin filaments to demonstrate that C2 binds to actin in a single structural mode that does not activate the TF unlike the polymorphic binding of C0 and C1 to actin. Comparison of amino acid sequences of C2 with either C0 or C1 shows low levels of identity between the residues involved in interactions with the TF but high levels of conservation for residues involved in Ig fold stabilization. This provides a structural basis for strikingly different interactions of structurally homologous C0, C1 and C2 with the TF. Our detailed analysis of the interaction of C2 with the actin filament provides crucial information required to model the collective action of cMyBP-C NTDs on the cardiac TF.


Assuntos
Actinas/química , Actinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA